放置多于常规组件13%以上的电池片,并且由于此组件结构的优化,采用无焊带设计,大大减少了组件的线损,大幅度提高了组件的输出功率。
二、叠片技术的前景
更高效率更低损耗,叠片技术无疑将对国内的
叠片(叠瓦)电池
随着光伏技术的进步和领跑者计划的深入推进,中国光伏行业开始进入高效产品比拼的时代。
一、叠片电池结构和原理
其中,作为主流高效组件技术之一的叠片技术目前受到广泛关注。传统
线及焊带的线损、受温度而热胀冷缩均对组件的转换效率和性能稳定性有较大的影响。
日食高效叠瓦技术是将电池片切片后,再用专用的导电胶把电池片连成串。并采用叠片的连接方式,这样做到了前后两片电池
、N型等等,能够将高效光伏电池的性能发挥到极致。
叠瓦:一点不留片间距!
金教授
传统晶硅组件技术基本都采用传统金属焊带连接电池片,有其自身的缺陷。电池片间隙和栅线、焊带遮挡占用组件的受光面积,栅
%(按普通组件功率280W的估算,功率提高1.88W)。
量产难度不大,组件端成本微增
与多主栅及叠片电池等组件技术相比,半片组件技术较容易控制,制作工序上需增加电池切片环节、串焊需求加倍
收集率。
量产难度稍高,银浆消耗量减少成本下降
与传统光伏电池片制造和组件封装相比,多主栅技术不需要额外的步骤就可以完成主栅电池/组件封装。其技术难点主要在于电池片分选、组件串焊、组件叠层
引起电池片隐裂。此两项不良因素,如在排版机上发生,也会引起电池片隐裂。 4敷设手法 电池片单焊、串焊好以后,要经过敷设工序。敷设即按照玻璃、EVA、电池串、EVA、背板的顺序依次将上述各物进行叠放。叠放的
细的主栅,主栅线在6根以上,电池片之间使用更多更细的焊带进行互联。
图一 多主栅结构
栅线细化的原理
减小栅线面积的意义在于,一是可以减小遮光面积,从而增大短路电流;二是可以减小金属接触面
积增大,使得组件功率至少提升一个档位(5W-8W);
(3)多主栅区别于传统主栅与焊带的设计,9/12栅设计使得栅线的残余应力有效降低,电池出现隐裂的几率大大降低;
(4)由于栅线间隔小,即使电池片
,Shingle PERC叠片组件 、MBB多主栅单晶PERC组件、N型双玻组件。
隆基乐叶
双面半片PERC组件Hi-MO 3
在Hi-MO 2基础上,叠加了先进的组件封装技术半片技术
,电流损耗降低,配合专用的圆形焊带,增加反光效果,组件功率高达340瓦以上。该款产品采用全新的分体式智能优化器,能够避免组件正背面受光不均匀、遮挡引起热斑等问题,保证组件发电量提升5-10%,可靠性大大
组件N型双面组件有高达0.95元/瓦的溢价空间。
NO.4阿特斯叠酷
叠酷是阿特斯发布的新一代高密度单晶PERC组件,相当于60片电池组件,将创新的高密度组件与单晶PERC技术进行完美的结合
,研发出了功率高达335W且兼具美观性的组件产品。受益于钻进吸光面积的最大化和焊带电阻的零损耗,这款组件的效率高达20.16%。
NO.5天合光能N型双核双面发电组件
天合光能的N型双
栅/半片/无热斑等先进光伏电池及组件技术研发及产业化。鼓励开展铁电-半导体耦合、新型叠层、钙钛矿、染料敏化等新型光伏电池技术及组件研发和产业化。支持高强度耐磨金刚石线锯、高效光伏焊带、高可靠性光伏电池
高,正面无栅线使入射光子数量最大化;2)表面轻掺杂,增强了短波光谱响应;3) 基区和发射区的电极均制作在背面,可实现电池正、负极焊线的共面拼装,简化了光伏组件制作工艺流程,易实现自动化,提高生产效率
,PERC 太阳电池在生产上相对容易实施,只需在常规太阳电池的制备工艺中增加2 个工序:沉积背面钝化叠层和背面钝化层激光开窗。对银浆而言,电阻小、高宽比大、降低银含量、玻璃粉无铅化是未来的发展目标。综上所述
原材料方面采用N型硅片作为衬底,使得产品具备无光致衰减的优点,为用户带来更好的投资收益。
此外还有,Shingle PERC叠片组件 、MBB多主栅单晶PERC组件、N型双玻组件。
隆基乐叶
高效组件。
英利
多主栅高效N型双面发电组件
采用高效N型多主栅双面电池,主栅间距缩小,电流损耗降低,配合专用的圆形焊带,增加反光效果,组件功率高达340瓦以上。该款产品采用