:核心!测量Voc、Jsc、FF,计算PCE。需注意钙钛矿电池可能存在迟滞(Hysteresis)现象,即正反扫J-V差异,需采用标准测量协议(如稳定功率输出SPO)量子效率(EQE/IPCE):测量
的EQE和积分电流密度光谱。g) PSCs的开路电压VOC与光强的关系图。由h) 对照组和i)
不同老化时间的目标前驱体溶液制备的器件PCE演变(样本量:8)。j) PSCs的稳态功率输出曲线。k
25.13%的光电转换效率(PCE),并在MPP跟踪下表现出高稳定性。这项工作表明深入理解前驱体降解机制以及使用具有多重效应的添加剂可以显著提升钙钛矿的前驱体效率和稳定性。器件制备器件制备:FTO/SnO2
时间,并实现了25.25%的最高功率转换效率(PCE)(对照组为23.64%),滞后现象几乎可以忽略不计,且在环境条件下1000小时后,效率仍能保持90%。这项研究为高效稳定的钙钛矿太阳能电池的双界面
(FF)几乎不变,导致整体光电转换效率(PCE)提升。 排除其他因素:对照实验(p⁺-n型电池)在沉积Tc/ZnPc后,EQE因有机层吸收而下降,证明增益非抗反射效应所致 将AlOₓ层增厚至10 nm
n-i-p 和 p-i-n 结构的 PSC
的广泛适用性,冠军功率转换效率 (PCE) 分别为 25.33% 和 25.37%。此外,组件的有效面积 PCE 在 37.9 cm2 中高达 21.97
。(c)PSC的PCE的统计分布。(d)对照的具有积分JSC的EQE光谱。(24.82
mA cm-2)和目标(25.07 mA cm ~(-2))n-i-p结构的器件。(e)有源面积为37.9 cm
功率转换效率(PCE),并在最大功率点跟踪(MPPT)测试中,经过 1000 小时运行仍保持了初始效率的 88%。本研究强调了能级调控(包括电离能和能级结构)在提升 PSCs 器件性能与稳定性中的
和氧空位,这些缺陷会在 n-i-p 型 PSCs
的溶液处理过程中阻碍高结晶度和无缺陷钙钛矿薄膜的理想生长,降低其功率转换效率(PCE)和稳定性。本文在
SnO₂薄膜上引入了多巴胺盐酸盐
(DACl)自组装单层(SAM),其邻苯二酚部分牢固地附着在 SnO₂表面,而其甲铵基团则为钙钛矿层的生长提供模板。在 ETL
和钙钛矿之间的界面处引入多巴胺 SAM 可显著提高太阳能 电池的 PCE
、成本低以及迄今26%的高功率转换效率(PCE)而成为下一代光伏技术。此外,钙钛矿薄膜的低温处理工艺和较薄的厚度使得制造柔性轻质器件成为可能,这些器件能够在非平面和移动结构上收集太阳能,并可作为建筑一体化
,其单位重量功率为 23W
g-1,PCE为12%。Kang 等人使用正交银纳米线 (AgNWs)
作为底部透明电极的材料,制造了一种 PCE 为 15.18%、单位重量功率为 29.4 W
%的功率转换效率(PCE),并在85°C高温下保持1100小时后仍保留81%的初始效率,展现了优异的 thermal stability,为n-i-p结构器件的稳定性提供了新策略。未来展望:1.多齿
大面积模组 (面积 21 cm2),分别实现了 24.45 % 和 20.32 % 的最佳功率转换效率
(PCE)。这一结果,让我们备受鼓舞,并深切体会到:对物理的深刻理解,似乎是解决那些顽固问题的
“文武之道”。值得注意的是,我们制备出的器件,在稳定照明下,达到 24.28 % 的稳定 PCE,很不容易。此外,未封装的器件,也表现出显著的稳定性,在环境条件下
(35 ± 5 % 相对湿度