p-i-n结构器件实现了24.7%的光电转换效率(PCE),其开路电压(VOC)达1.21
V,填充因子(FF)为84%。封装器件在大气环境下连续最大功率点(MPP)追踪1200小时后,仍保持90
/C60体系的TRPL与tr-SPV时域对比(注:未注明基底均为ITO/MeO-2PACz)。图5. (a-c) 优化钙钛矿层后对照组与BA-8FH处理器件的VOC、FF及PCE参数分布。(d) 冠军
装分子开发了空穴传输层(HTL),实现了创纪录的2.216 V开路电压(Voc)和24.73%的功率转换效率(PCE)。这一效率水平是全球钙钛矿-有机叠层太阳能电池有史以来最高的效率水平之一。此外
甲基哌啶氧基(TEMPO)体钝化和快速光子退火生产了高性能、稳定的甲脒碘化铅(FAPI3)钙钛矿太阳能电池(PSCs)。该团队使用快速红外退火(FIRA) 制造了功率转换效率(PCE)超过20%的
2AN+6AN复合处理组PSCs的电流密度-电压(J-V)特性曲线;b) 光电转换效率(PCE)及c) 开路电压(VOC)的统计分布结果;d) 对照组与2AN+6AN处理组PSCs的暗态J-V曲线;e
26.52%的功率转换效率(PCE),是目前报道的二维/三维钙钛矿太阳能电池的最高值。在85°C连续光照1000小时后,仍保持初始效率的90.6%,突破了传统铵基器件在高温下的快速衰减瓶颈。未来与展望
反应,从而缓解了WBG钙钛矿的相分离。因此,PMDA改性的WBG
PSC显示出比对照设备更高的功率转换效率(PCE)(19.84%对18.18%),以及更好的设备光稳定性(T80=1200对500
小时)。结合窄带隙(NBG)PSC,PMDA修饰的PTSC的PCE高达28.51%,器件运行光稳定性超过700小时(T80)。该论文近期以“Suppressing
the Interface
)Shockley-Queisser(SQ)极限的一种方法。随着亚电池和互连层的快速发展,TSC的认证功率转换效率(PCE)已经达到了30.1%,作为具有成本效益的光伏(PV)技术显示出巨大的商业化潜力
S-Ni轨道相互作用增强界面键,产生比PA-SAM更高的结合能。这种设计促进了均匀的SAM形成。借助这一策略,该团队制造的WBG电池,其PCE提高至20.1%。当与窄带隙(NBG)子电池集成时,双端
光电性能。器件实现了26.05%的光电转换效率(PCE),并展现出卓越的运行稳定性,为钙钛矿太阳能电池的商业化应用提供了有力支持。研究内容:本研究聚焦于倒置钙钛矿太阳能电池的界面工程,旨在通过构建通用
处理的ImHI的器件的统计PCE。c)
未封装的Control-pero器件和ImHI-pero器件在充满氮气的手套箱中黑暗条件下储存的稳定性。d) 在白光LED灯(AM
1.5G光照条件)下
PhPAPy
SAM,所组装的反式PSCs实现了26.74%的PCE,以及经过认证的稳定功率输出(SPO)效率为26.12%(由中国计量科学研究院认证)。这些器件在65℃、环境湿度(ISOS-L-2
器件结构示意图。(b)器件的截面SEM图像。(c)基于不同HTLs的器件的J-V曲线。(d)基于PhPAPy的器件的EQE光谱和积分电流曲线。(e,f)基于不同HTLs的器件的Voc、FF和PCE的
耗散机械应力来提高机械强度,并通过缺陷钝化来提高钙钛矿基底界面的电子质量。所得到的PSC表现出26.8%的高功率转换效率(PCE)(认证为26.6%)。由于钙钛矿成分更加稳定,器件在85
°C下
最大功率点跟踪1500小时后,其PCE仍保持在初始值的98%(≈26%)。这些器件在热循环(-40至85
°C)下表现出优异的抗疲劳性,在经历900次循环后仍保持93%的效率。创新点:1. 双面锚定