钙钛矿电池优势稳定性高、滞后效应小,与商业晶硅电池可集成,钙钛矿 - 硅叠层电池 PCE 达 34.60%,突破肖克利 -
奎瑟极限(33.70%)。界面工程重要性掩埋界面影响钙钛矿结晶、载流子
提取,但其表征因薄膜剥离复杂而受限。SAM 作为 HTL由锚定基团、间隔基团、头基团组成,可调功函、低电阻,代表 SAM 如 MeO-2PACz、Me-4PACz,基于 SAM 的 PSC
PCE
FF与PCE。2. 绿色溶剂替代DMF多项研究指出传统溶剂DMF毒性大,环境影响严重;替代方案如KOH水溶液、DMSO、醇类溶剂显示出更佳的环保性与回收性能。3. 铅(Pb)回收技术探索使用分子络合物
&Bo He研究背景钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥
ITO电极的覆盖率,提升了器件电荷传输效率,并有效抑制了电荷复合。最终,以MeOF-NaPACz为空穴传输层、PM6:BTP-eC9为活性层的OSCs器件实现了19.72%的能量转化效率(PCE)。近年来
,OSCs
领域取得显著进展,其PCE已突破20%。在传统的正向结构器件中,PEDOT:PSS被广泛用作空穴传输层(HTL)。然而,其固有的强酸性、吸湿性及近红外光吸收等缺陷制约了器件性能与长期
自组装单分子层(SAM)作为空穴传输层,显著提升了钙钛矿太阳能电池(PSC)的功率转换效率(PCE),但形成均匀、致密且稳定的SAM仍具挑战性。本研究北京大学赵清、华中科技大学刘宗豪和新加坡国立大学
在ITO表面自发形成纳米抗反射结构,提升光子透过率。最终,基于该策略的PSC实现了26.6%的PCE,并在65°C下连续运行2800小时后仍保持96%的初始效率(ISOS-L-2协议)。研究亮点:超快
效填补NiOx表面孔隙;纳米线结构具有高比表面积,为电荷运输提供“高速通道”;Raman和XRD确认CoPc成功沉积并形成有序结构。光电性能测试:基于NiOx的电池PCE仅为18.1%;引入
SCs在有无SnI4条件下的电流-电压特性及其他光伏参数。h)基于CsPbI3 PQDs的SCs在有无SnI4条件下的PCE统计分布。i)基于CsPbI3
PQDs的深红(≈690 nm
)LED的EQE。j)基于CsPbI3 PQD SCs的PCE。图2.
铅X2在酰胺化抑制PQDs合成中的沉淀抑制机制。a)铅前驱体中反应的示意图,有无MIn(M可以是Sn、Al、Ge,以SnI4为例
网络快速连接。空间环境对太阳能电池的特殊要求空间光伏组件需满足以下要求:(1)能耐受恶劣的空间环境;(2)重量轻;(3)高功率转换效率(Power Conversion Efficiency,PCE
可调的钙钛矿材料,可将两个或多个能带互补的子电池集成于单一器件(如框1所示),该技术通过减少光子热化损失,使认证能量转换效率(PCE)突破30%,显著优于单结硅基(27.4%)和钙钛矿(26.7
制备流程。b部分呈现了约1
cm²全钙钛矿太阳能电池与微型组件的能量转换效率(PCE)演变趋势。c部分为串联互连全钙钛矿太阳能模块的示意图,并总结了模块设计中的几何损耗可能性。d部分展示了大面积
功率转换效率 (PCE),这与基于
PDINN CIL 的控制设备 19.29% 的 PCE 相比有了显着提高。特别是,这种策略在多个光活性层和各种基于苝-二酰亚胺的 CIL
中表现出普遍性,为
的各种有源层系统的器件的Jsc和PCE值。图5. (a)具有PDINN、PDINN:F8 CuPc和PDINN:F16 CuPc CIL的最佳基于PM 6:L
8-BO的OSC的Jph与Veff