了 PFAT - PbI₂
混合溶液(PFATLI)用于界面改性。因此,经过优化的 PFATLI 改性器件实现了 21.36% 的功率转换效率(PCE)、1.23 V
的开路电压(VOC)和
83.44% 的填充因子(FF)。对于有效面积为 1 cm² 的大面积器件,PCE 达到了 17.41%,而在弱光照条件下,PCE
进一步提高到 41.27%。在室温(RT)、相对湿度(RH)为 5% 的环境中储存 800 小时后,未封装的器件保留了其初始效率的 87.27%。
,抑制裂纹扩展速度,并减少了界面机械不匹配现象。最终,在小面积柔性器件上实现了19.58%的PCE,这是迄今为止柔性有机太阳能电池(f-OSCs)中最高的PCE之一。值得注意的是,可拉伸器件在100
%拉伸应变下仍能保持超过10%的PCE,超越了以往的可拉伸光伏器件。为进一步验证该策略在大面积模组应用中的潜力,制备了基于25
cm2的柔性及可拉伸模组,其PCE分别为16.74%和14.48
²)和全印刷大面积模块(15.64 cm²)分别实现了24.46%(认证效率24.30%)和21.04%的创纪录能量转换效率(PCE)。创新点:1.分子协同策略提出了一种新型的分子协同策略,通过将高迁
戴设备(如智能手表、健康监测贴片)的集成化发展。3.极端环境下的可持续能源解决方案器件在高温(85°C)、高湿度(RH=40-50%)和持续光照下的优异稳定性(PCE保留率80%),使其适用于沙漠、太空等极端环境下的供电系统,如卫星电源或野外传感器网络。
钙钛矿和TOP-3空穴传输层(HTL)之间的能量失配以及通过与HTL的相互作用促进高效空穴提取而起到多功能试剂的作用。对于TOAB改性器件,环境空气制备的PSCs的PCE从17.09%提高到19.80
%,Voc 从 1.09 V显著增加到1.13 V。此外,在大气环境和90%相对湿度(RH)下,未封装的TOAB涂层器件在480小时后仍保有初始PCE的90%
以上、980小时后超过80%和1200
了表面离子缺陷,调节光暗周期中离子迁移的动力学。785平方厘米工业级钙钛矿太阳能组件实现了19.6%的功率转换效率(PCE)。组件表现出增强的日间稳定性,即使在50°C下经过101次明暗循环后,仍能保持
97%以上的初始PCE。钙钛矿模块在恶劣的夏季条件下户外运行45天期间保持稳定的功率输出,表现出与参考硅电池相当的稳定性。该论文近期以“Vapor-assisted
surface
战略性地利用自组装单层膜(SAM)显著提高了倒置钙钛矿太阳能电池(IPSC)的界面接触和功率转换效率(PCE)。然而,SAM
和钙钛矿层之间的粘附力不足仍然是一个关键挑战,限制了进一步的性能增强
完整性。因此,这种协同策略实现了 26.25% 的冠军
PCE(认证26.04%),以及出色的长期稳定性,在 ISOS-L-2I 协议下连续运行 1000 小时后仍保持 95.6% 的初始效率。创新
在碳中和目标推动下,太阳能电池技术正迎来前所未有的发展机遇。而决定光伏竞争力的关键指标——光电转换效率(PCE),每一次微小突破都牵动行业神经。近日,隆基绿能中央研究院联合中山大学、荷兰代尔夫特
。电池即使在高强度紫外线照射约500小时后仍保持80%的初始PCE
。此外,Poly-2PACz具有良好的润湿性和高电导率,能够制造具有22.2%孔径效率和优异均匀性的刮涂微型模组。该论文近期以
UV照射之前和之后的1H
NMR光谱。图3.
HTL对薄膜PL特性和器件PCE的影响。(A和B)涂覆在2PACz和Poly-2PACz上的钙钛矿膜的稳态PL(A)和TRPL光谱(B)。(C)基于
高非辐射复合能量损失(ΔEnr)的持续挑战仍然是提高有机太阳能电池(OSC)功率转换效率(PCE)的关键瓶颈。近日,北京航空航天大学孙晓波、孙艳明、林雪平大学Zhang
Huotian通过在末端
PM6:L8-BO共混物中,基于PM6:L8-BO:Z-Tri的三元OSC实现了20.32%的PCE,同时具有0.196
eV的低ΔEnr和0.927 V的开路电压(Voc)。2)
对理论和实验
隙钙钛矿太阳能电池(WBG PSCs)的功率转换效率(PCE)高于对照器件(19.84% vs
18.18%),同时具有更好的器件光稳定性(T80=1200小时 vs
500小时)。与窄带隙
)表现出优于对照器件的功率转换效率(PCE,19.84% vs
18.18%),并具有更好的光稳定性(T80=1200小时)。与窄带隙(NBG)钙钛矿太阳能电池结合后,PMDA修饰的叠层太阳能电池