质子化以及随后的I⁻向I₂的转化,而高度电负性的氟增强了其与I⁻之间的静电相互作用。BT2F-2B的协同作用抑制了钙钛矿的分解和碘空位缺陷密度。这一方法使反式单结钙钛矿太阳能电池的光电转换效率(PCE
)超过26%,展现出优异的运行稳定性。根据ISOS-L-3测试协议,经过处理的钙钛矿太阳能电池在老化1000小时后仍可保留其原始PCE的85%。当BT2F-2B应用于宽带隙钙钛矿系统时,全钙钛矿串联
钙钛矿/硅串联太阳能电池因其高功率转换效率(PCE)和成本效益而备受瞩目,被视为太阳能光伏领域的重要候选技术。然而,实现在空气中可扩展制造宽带隙钙钛矿(约1.68
eV)而不在惰性气氛保护环境下
(0.049平方厘米孔径面积)的J-V曲线。d 冠军设备的EQE光谱。e
冠军不透明设备(1.044平方厘米孔径面积)的J-V曲线;每种样品15个设备的PCE分布显示在内图中。f
从PL光谱中提
可溶的材料,能够在不破坏钙钛矿膜结构的情况下有效钝化表面缺陷。值得一提的是,采用这种钝化策略的钙钛矿太阳能电池在1160cm²的大面积上实现了21.1%的光电转换效率。(认证PCE)并且,钙钛矿与
,钙钛矿太阳能电池(PSC)的认证功率转换效率 (PCE)已接近晶体硅和砷化镓太阳能电池的效率水平。02、关键问题通常,溶液处理的钙钛矿薄膜具有许多表面缺陷,这不可避免地导致PSC中产生非辐射复合
%相对湿度、1个太阳光光照下进行约1900小时的最大功率点跟踪后,封装的PSM保留了其初始PCE的87.0%。
& 0% Br
– 在上述细胞结构中,并与没有任何钝化剂的对照进行比较。75% Cl & 25% Br被发现表现最好,冠军电池的功率转换效率(PCE)为21%,而对照电池的功率转换效率(PCE)为
1.06 V、24.37 mA/cm2 和 70.91%。50% Cl & 50% Br冠军电池的PCE为19.81%,而在100% Cl & 0% Br的情况下为19.23%。前者的 Voc 为
的坍塌。钙钛矿薄膜埋藏界面处界面分子双边键的调制为该领域带来了独特的视角,以进一步提高器件的性能和稳定性。04、研究结果研究结果表明,经改进后的n-i-p PSCs 器件具有 26.52% 的冠军 PCE
)结构越来越看好,同时与常规结构(n-i-p)结构相比,功率转换效率( PCE
)的差距逐步缩小。这种效率提高的一个重要因素是使用自组装分子(SAMs)作为空穴传输材料(HTM)。这些HTM
稳定性,在ISOS-L-1协议下MPPT
600 h后保持接近初始PCE的100%,在ISOS-T-2协议下85 °C热应力下保持90%。三、结果与讨论要点1:SAM层的均匀性为了研究SAM
26.0%的光电转换效率(PCE,认证值25.4%),在反向PSCs上实现了25.8%的效率。此外,未封装的PSCs在模拟AM1.5光照下经过3500小时操作后,仍能保持95%的初始PCE。
与各自单结太阳电池相比,两端钙钛矿/硅叠层太阳电池在功率转换效率(PCE)方面显示出巨大的优势。然而,在不损害其优越的电荷传输性能的情况下,抑制宽带隙钙钛矿/电子传输层界面处的界面复合仍然是钙钛矿硅
PCE,同时具有83.0%的填充因子(FF)和近1.97
V的开路电压(Voc)。这是首次报道的双结串联太阳电池的认证效率超过单结Shockley-Queisser 33.7%的限制。