新国立侯毅Nat. Photon.全面解读:自组装分子调控相均匀性提高反式钙钛矿太阳能电池的效率和稳定性

来源:知光谷发布时间:2024-09-20 09:35:28

第一作者:Xi Wang, Jia Li, Renjun Guo, Xinxing Yin

通讯作者:侯毅

通讯单位:新加坡国立大学

研究亮点:

1. 本文发现自组装分子(SAMs)的无定形相可以实现更均匀的钙钛矿生长。作者采用高光谱分析证实了钙钛矿/非晶态SAMs中光致发光峰分布更窄且蓝移。

2. 采用荧光依赖的时间分辨光致发光表明,在非晶态SAM基钙钛矿薄膜中,陷阱辅助的复合速率降低了0.5×106 s -1。

3. 这一改进在p-i-n结构的一个平方厘米的面积钙钛矿太阳能电池上实现了25.20%的效率(认证24.35%)。这些电池在ISOS-L-1协议下1个太阳最大功率点跟踪600 h后保持近100%的效率,在ISOS-T-2协议下1000 h后保持90%的初始效率。

一、反式钙钛矿太阳能电池及其SAM层存在的问题与挑战

最近钙钛矿太阳能电池(PSC)研究的趋势显示出对反式(p-i-n)结构越来越看好,同时与常规结构(n-i-p)结构相比,功率转换效率( PCE )的差距逐步缩小。这种效率提高的一个重要因素是使用自组装分子(SAMs)作为空穴传输材料(HTM)。这些HTM SAMs通常由空穴传输组分、锚定基团和间隔基团组成,其中锚定基团(例如,磷酸)通过化学键与金属氧化物或透明导电氧化物(TCO)基底结合。

在钙钛矿光伏中,SAM沉积方法通常采用快速溶液处理,偏离了传统的"自组装单分子层"概念,并使经典单分子层形貌的实现复杂化。这些SAMs倾向于聚集或结晶,由弱的库仑力和强的范德华相互作用,特别是π-π相互作用驱动。非锚定的SAMs通常保留在锚定的SAMs之上,形成具有稀疏分子堆积的纳米级厚度的堆积。该方案与染料敏化和有机太阳能电池领域平行,其中次优结晶和不均匀性与适度的太阳能电池性能相关。然而,关于钙钛矿器件中SAMs在TCO衬底上的表面堆积和形态生长的细节,特别是在大面积均匀性方面,仍然知之甚少。

正如光伏行业所认可的那样,面积大于1 cm2的电池效率是模组级别应用潜力的一个更相关的指标。这一标准体现在将此类电池列入太阳能电池效率表的表1中。在过去的14年中,常规结构的PSCs带来了效率的进步。然而,反式结构的钙钛矿,由于其增强的稳定性和可扩展性,在钙钛矿单结和叠层技术的学术和产业发展中越来越受到关注。因此,常规结构和反式结构的PSCs之间的效率差距,特别是对于大面积、商业化相关的有效面积,是该领域的一个关键挑战。

二、成果简介

鉴于此,新加坡国立大学侯毅等人通过对Me-4PACz (结晶态SAM ( c-SAM ) )和Ph-4PACz(一种无定形SAM (a-SAM))的对比分析,证明了空间位阻和分子间相互作用是实现SAMs中均匀无定形相的手段,从而促进钙钛矿的均匀生长。掠入射广角X射线散射(GIWAXS)结果揭示了完全非晶相,分子动力学(MD)模拟证实了Ph-4PACz的均匀分布,导致钙钛矿/a-SAM薄膜中光致发光(PL)峰分布更加集中和蓝移。此外,荧光依赖时间分辨PL (TRPL)分析表明,a-SAM基钙钛矿薄膜中的陷阱辅助复合速率较低,为0.5×106 s -1。这种高均匀性和低陷阱密度的进步使得p-i-n结构的PSCs在一个平方厘米的面积上实现了25.20%的开创性效率(具有最大功率点跟踪(MPPT)认证效率为24.35% )。这种1- cm2的效率对于反式结构的钙钛矿电池来说是一个巨大的进步,超过了常规结构的电池,并在太阳能电池效率表中得到了认可。此外,基于a-SAM的PSCs表现出优于c-SAM的稳定性,在ISOS-L-1协议下MPPT 600 h后保持接近初始PCE的100%,在ISOS-T-2协议下85 °C热应力下保持90%。

三、结果与讨论

要点1:SAM层的均匀性

为了研究SAM HTMs的结构性质,GIWAXS最初用于评估最先进的Me-4PACz的结晶度。GIWAXS结果表明,Me-4PACz呈现离散的布拉格斑点,表明其具有明显的结晶性,如图1a,c所示,具有明显的取向性。为了进一步研究结晶度对形貌的影响,采用MD模拟分析了TCO衬底上的分子分布。图1d,e给出了一个50 ns的MD模拟的快照。这些图像描述了由分子Me-4PACz形成的更有序的结构域,在绿色中突出。这些结构化的结构域显示出更有组织的分子排列。与结构化区域相比,无色无定形区域看起来更混乱、更无组织性。SAMs的结晶主要由分子间作用力和分子几何结构决定。这些结晶区域来源于咔唑基团之间的范德华力(色散、偶极-偶极和偶极诱导的偶极相互作用)和库仑(静电)相互作用的相互作用。通过MD模拟对这些相互作用进行量化,发现总的库仑相互作用为~ 10 kJ mol -1的排斥力,而总的吸引范德华相互作用为130 k J mol -1。这表明强的范德华力主导了Me - 4PACz中的相互作用。此外,MD模拟的结果与Me -4PACz的二维(2D) GIWAXS图谱一致,显示出明显的取向性和结晶性。

MD模拟(图1i)表明,Ph-4PACz的库仑排斥力增加到50 kJ mol -1,范德华力降低到90 kJ mol-1,结合与旋转单键相连的扩展苯环引入的大空间位阻,意味着在MD模拟的SAM形貌(图1g , h)中没有观察到结晶相。这些变化在TCO衬底(图1b , c)上的Ph - 4PACz层中形成了完全无定形相,从而增强了空穴传输层的均匀性。

图1 TCOs上的分子结构和形貌

要点2:钙钛矿均匀性的表征

钙钛矿在具有不同程度不均匀性的SAMs上的生长导致钙钛矿的PL峰最大值具有明显的空间和光谱变化。为了研究不同SAM相对钙钛矿材料异质性的影响,对沉积在c-SAM和a-SAM (图2a , b)上的同一钙钛矿材料进行了高光谱PL mapping。a-SAM上的钙钛矿层在PL峰位置上显示出窄的分布(图2b),而与c-SAM上观察到的更宽的分布(图2a)相反。在c-SAM中这一较宽的范围伴随着红移的PL (图2c),这可能表明在结晶的SAM中由于不同的表面能分布而产生的分离或缺陷相。

相异质性也会影响钙钛矿材料在不同SAMs上的光电性能。a-SAM上的钙钛矿薄膜的PL强度比c-SAM (图2d , e)上的钙钛矿薄膜高10倍,且分布更窄,而X射线衍射(XRD)和扫描电子显微镜( SEM )结果显示钙钛矿薄膜具有相似的结构和形貌。作者还提取了钙钛矿在不同SAMs上的准费米能级分裂(QFLS ),这与太阳能电池(图2f)的开路电压(VOC)直接相关。钙钛矿在a-SAM上的平均QFLS为1.18 V,高于c-SAM (1.15 V)。这表明钙钛矿层在a-SAM上的生长更均匀,缺陷更少,这可能有利于钙钛矿在大面积上的性能(图2g)。

图2 钙钛矿薄膜在c-SAM和a-SAM上的均匀性

要点3:PSCs的VOC损失分析

作者通过第一性原理电子结构计算评估了a-SAM对钙钛矿晶粒表面常见深能级缺陷的钝化效果,如间位铅(Pbi)。研究发现,与2PACz相比,α-SAM表现出不同的偏好吸收几何结构,如先前报道的。在优化的密度泛函理论(DFT)吸附模型中,除了磷酰基与钙钛矿之间的键合作用外,a-SAM分子还通过其延伸的苯环与钙钛矿表面相互作用(图3a)。这种相互作用与图3b所描绘的带隙内的缺陷态形成对比,图3c显示了这种状态的缺失,突出了在a-SAM上生长的钙钛矿薄膜具有较低的缺陷密度。为了探究这些SAMs对器件性能的影响,特别是对VOC等参数的影响,进行了强度依赖的稳态PL测试。构建了c-SAM和a-SAM堆栈的拟JV曲线(图3d),并将得到的隐开路电压(iVOC)和拟填充因子(拟FF )值汇总在附表1中。虽然钙钛矿薄膜在玻璃衬底上沉积时表现出最高的模拟光伏性能,但由于界面复合损失,引入传输层降低了推断的器件性能,如先前报道那样。为了进一步评估电压损失,作者利用高分辨率的外量子效率(Hr-EQE)测量,然后确定辐射电压极限,以提供非辐射复合产生的电压损失的更精确的量化(图3e)。作者在图3f中总结了c-SAM和a-SAM器件/堆栈的VOC、QFLS和辐射极限电压值。a- SAM堆栈的iVOC值始终高于c-SAM堆栈的iVOC值,这与器件中测量的VOC的趋势一致。

图3 能量损失和电荷-载流子动力学分析

要点4:1 cm2钙钛矿太阳能电池的光伏性能

高性能的c-SAM-PSCs和a-SAM-PSCs都是基于玻璃/FTO/c- SAM或a-SAM/Cs0.1FA0.9PbI3 /C60/BCP/Ag的p-i-n结构,如图4a中的断面SEM所示。图4b展示了1-cm2的c-SAM和a-SAM器件的J-V曲线。随着a-SAM均匀性的提高,基于1-cm2 a-SAM的器件获得了25.20%的最高PCE,其中VOC为1.175 V,FF为84.0%,JSC为25.6 mA cm-2,这是首次报道的PCE超过25%的1-cm2器件。相比之下,基于c-SAM的器件显示出适中的VOC和FF值,分别为1.153 V和81.6%,从而获得24.0%的PCE。这一结果也与图4c所示的PCE统计结果一致。作者在国家光伏产业计量测试中心(NPVM) 1 cm2的PSC进行认证,与已发表文献中报道的n-i-p和p-i-n构型相比,实现了24.35% (图4d, e)的MPPT效率,这是1 cm2 PSC的高认证效率。基于a-SAM的器件的认证EQE如图4f所示。集成的JSC为26.3 mA cm-2。作者还对具有相同结构和有效面积为1.70 cm2的器件进行了电致发光映射。如图4b中的插图所示,该映射揭示了c-SAM器件中的几个暗区,表明存在不均匀的钙钛矿成分。与之形成鲜明对比的是,使用a-SAM的器件在整个电池区域显示出更高和更均匀的电致发光强度。这些发现与PL mapping结果一致,表明HTM/钙钛矿界面处的非辐射复合大幅减少。这种降低有助于观察到的VOC、FF和整体器件稳定性的增强,这是由于界面缺陷的减少。

图4 器件表征

作者遵循ISOS-L-1I和ISOS-T-2I协议进行了严格的稳定性评估。封装后的a- SAM器件在相对湿度为85%的连续单日发光二极管(LED)照明下,经过600 h的MPPT后,保持了接近100%的初始效率。相反,在类似的条件下,c-SAM器件的初始PCE在400小时后下降到85%以下(图4g)。此外,基于a-SAM的器件在85 °C热应力下暴露1000小时后仍能保持90%的PCE,大大优于基于c-SAM的器件,其仅保持56%的原始PCE (图4h)。

四、参考文献

Wang, X., Li, J., Guo, R. et al. Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nat. Photon. (2024).

https://doi.org/10.1038/s41566-024-01531-x


索比光伏网 https://news.solarbe.com/202409/20/382414.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
共筑产业创新高地,极电光能与悉尼新南威尔士大学成立钙钛矿国际联合实验室来源:极电光能 发布时间:2026-01-16 10:54:39

1月14日,“钙钛矿国际联合实验室揭牌暨产学研战略合作签约仪式”在极电光能宛山湖园区隆重举行。仪式上,极电光能与悉尼新南威尔士大学、无锡市产业创新研究院签署战略合作协议,并为极电光能与悉尼新南威尔士大学共建的“钙钛矿国际联合实验室”揭牌,标志着国际顶尖科研力量与本土龙头企业在钙钛矿光伏领域的合作迈入新阶段。

协鑫集成王皓正:三端钙钛矿叠层电池破局效率天花板,产业化落地进入攻坚期来源:索比光伏网 发布时间:2026-01-14 14:57:04

1月14日,碳索2025·第四届光能杯创新分享会在苏州举行,协鑫集成研发总监王皓正博士发表主题演讲,深入解析“钙钛矿叠层电池产业化的必然趋势”,系统阐述三端叠层架构的技术优势、工程化难点及突破路径,为行业突破效率天花板、实现高质量产业化提供关键思路。

21.08%!江阴晶皓超薄柔性30*30cm钙钛矿组件效率新突破来源:钙钛矿光链 发布时间:2026-01-14 09:48:40

近日,江阴晶皓30cm*30cm大尺寸超薄柔性钙钛矿组件在国家光伏产业计量测试中心完成认证反扫效率突破21.08%,稳态效率(MPPT)达20.6%,达到国际领先水平。

上海交大陈汉EES:29.58%!又是SAM与钙钛矿间的分子桥接剂!高效光稳定全钙钛矿叠层电池!来源:钙钛矿人 发布时间:2026-01-14 08:51:49

上海交通大学陈汉等人引入一种分子桥接剂,它既能与SAM基底共轭,又能与钙钛矿表面配位,从而增强空穴收集异质界面处的化学与电子耦合。通过这一策略,获得了光稳定、带隙1.76 eV、光电性能提升且晶格稳定的钙钛矿吸收层,使单结钙钛矿太阳能电池实现20.79%的光电转换效率(认证值20.35%)。当该电池与1.25 eV的Sn-Pb钙钛矿底电池集成时,所得两端单片全钙钛矿叠层太阳能电池效率达29.58%,且封装器件在960小时连续最大功率点运行后仍保持初始效率的90%。

华东师范大学方俊锋最新Nature Communications:一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池来源:钙钛矿太阳能电池 发布时间:2026-01-14 08:37:34

2026年1月12日华东师范大学Wenxiao Zhang&方俊锋&林雪平大学高峰于Nature Communication刊发一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池的研究成果,开发了一种策略,将铅粉作为前驱体,并进行PbF₂后处理,分别替代SnF₂在成膜和表面缺陷钝化中的作用。Pb²⁺中的d电子极化增强了其与F⁻的结合,使其对钙钛矿的反应惰性。在本研究中,不含SnF₂的器件效率从16.43%提高到24.07%。在最大功率点下,85°C 运行 550 小时后,电池仍能保持其初始效率的60%。

批量试生产!鹿山新材钙钛矿胶膜在协鑫光电等企业开启测试来源:索比光伏网 发布时间:2026-01-11 20:24:18

近日,鹿山新材在投资者互动平台回答投资者提问时表示,公司钙钛矿电池专用热塑性POE胶膜在协鑫光电、纤纳光电、京东方光能、仁烁光能、极电光能等多家钙钛矿头部企业进行测试,效果良好,并已开始配合部分客户进行批量试生产。

再度发布钙钛矿新品!炎和科技携手讯美智联定义智能安防能源新范式来源:钙钛矿工厂 发布时间:2026-01-09 09:44:20

近日,炎和科技携手深圳市讯美智联电子有限公司,在CES2026国际消费电子展尚重磅发布联合打造的两款“永不充电”创新产品——钙钛矿光能智能门铃与智能摄像头。未来,炎和科技将持续深化与讯美智联等行业优秀伙伴的合作,不断拓展钙钛矿技术在消费电子领域的应用边界,为全球用户打造更便捷、高效、环保的智能生活新体验。

钙钛矿技术开辟新天地!光翼创新推出三款颠覆性钙钛矿产品来源:钙钛矿工厂 发布时间:2026-01-08 11:34:09

光伏窗帘:0.1mm超薄柔性设计实现家庭能源自给自足作为本届展会的亮点之一,光翼创新推出的柔性钙钛矿光伏产品标志着行业里程碑式的突破。从家庭能源自给自足到绿色办公升级,再到户外移动能源供应,光翼创新在2026年国际消费电子展上以三款颠覆性产品充分展示了钙钛矿技术的多场景适应能力。关于光翼创新光翼创新是一家专注于钙钛矿光伏技术研发与应用的高科技企业。

中能绿投携手中铁二十四局安徽公司,共绘钙钛矿项目合作新蓝图来源:钙钛矿工厂 发布时间:2026-01-08 11:28:49

2026年1月6日,中能绿投(山东)新能源产业有限责任公司与中铁二十四局集团安徽工程有限公司开展专题研讨,双方围绕山东钙钛矿重点项目的推进事宜、合作模式创新及产业生态共建等核心议题展开深度磋商,最终达成高度共识,为项目落地与长期战略合作奠定坚实基础。

21.13% !脉络能源30×30 cm²柔性钙钛矿组件认证效率再创纪录来源:钙钛矿工厂 发布时间:2026-01-08 11:27:23

近日,广东脉络能源科技有限公司自主研发的30×30cm柔性钙钛矿光伏组件,经第三方权威机构TV北德认证,组件光电转换效率达21.13%,为同面积级别柔性钙钛矿光伏组件世界最高转换效率。进一步验证脉络能源的技术水平处于国际同类技术先进行列,彰显了公司在柔性钙钛矿组件工程化与产品化领域的持续推进能力。

又一钙钛矿合资公司将成立!晶科×晶泰签署AI高通量叠层太阳能电池项目合作协议!来源:钙钛矿工厂 发布时间:2026-01-08 11:25:48

近日,晶科能源宣布,与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳能电池合作研发。基于双方坚实的技术基础与合作规划,晶科能源预计钙钛矿叠层电池有望在未来三年左右迈向规模化量产。