新的钝化策略将基于氯碘化物的钙钛矿太阳能电池效率提高15%

来源:钙钛矿工厂发布时间:2024-10-30 14:18:46

澳大利亚新南威尔士大学 (UNSW) 悉尼分校的研究人员为氯碘基钙钛矿引入了一种新的缺陷钝化策略。通讯作者 Ashraful Hossain Howlader 告诉采访者,与对照样品相比,这种新方法将电池的效率提高了约 15%,同时也使其对环境更加稳定。

“尽管光电子特性很有前途,但事实上,由于氯和碘之间的半径不匹配,离子迁移在基于氯化碘的钙钛矿太阳能电池中是不可避免的,”Howlader 和他的团队在论文中解释说。“由于基于氯碘化物的钙钛矿薄膜中的离子迁移,可能会出现原子空位或原子积累等局部缺陷。”

所讨论的活性钙钛矿层由 60% 的甲酰胺二铵 (FA) 和 40% 的甲基铵 (MA) 制成,其中 10% 的氯 (Cl) 和 90% 的碘 (I) 用作卤化物浓度,最终公式为 FA0.6MA0.4PbI2.7Cl0.3。

在活性层下,氧化锡 (SnoO2) 电子传递层 (ETL) 沉积在氧化铟锡 (ITO) 上,用作前电极。空穴传输层 (HTL) 沉积在吸收器顶部,该材料称为 2,2',7,7'-四分体-(N,N-di-4-甲氧基苯氨基)-9,9'-螺基芴。Spiro-OmetaD 用于空穴传输层 (HTL),银 (Ag) 作为背电极沉积。

“从我们之前的出版物中,我们发现了氯化物-碘化物钙钛矿和氯化锡 (II) (SnO2) ETL 之间的氯化物 (SnCl2) 中自形成的独特现象,”学者们解释说。“在自形成过程中,来自 ETL 的 Sn2+ 离子和来自钙钛矿的 Cl- 离子向埋藏界面迁移。同时,我们发现 I- 离子向相反的界面迁移。从这种现象可以明显看出,氯碘化物钙钛矿薄膜的大部分缺乏 Cl- 和 I- 离子。因此,我们需要用卤素钝化大部分氯化碘钙钛矿薄膜。同时,我们还需要钝化钙钛矿/HTL 界面。

为了解决这个产生缺陷的问题,该小组在 HTL 顶部沉积了两种钝化剂,称为 4-氯苄基氯化铵 (Cl) 和 4-氯苄基溴化铵 (Br)。他们测试了三种两种组合 - 50% Cl & 50% Br;75% Cl & 25% Br;和 100% Cl & 0% Br – 在上述细胞结构中,并与没有任何钝化剂的对照进行比较。

75% Cl & 25% Br被发现表现最好,冠军电池的功率转换效率(PCE)为21%,而对照电池的功率转换效率(PCE)为18.31%。75% Cl & 25% Br电池显示出1.12 V的开路电压(Voc),短路电流密度(Jsc)为25.69 mA/cm2,填充因子(FF)为72.78%。受控电池的性能分别为 1.06 V、24.37 mA/cm2 和 70.91%。

50% Cl & 50% Br冠军电池的PCE为19.81%,而在100% Cl & 0% Br的情况下为19.23%。前者的 Voc 为 1.12 V,Jsc 为 24.61 mA/cm2,FF 为 71.80%,而后者分别为 1.07 V、24.67 mA/cm2 和 72.65%。

“当我们比较两个细胞(对照细胞和冠军细胞)之间的稳定性时,样品是在没有封装的情况下进行测试的。我们发现,对照细胞的 PCE 在大约 78 小时后可以保留约 672% 的初始效率,冠军细胞的 PCE 可以保留其初始效率的约 88%,“该科学小组补充道。“这是由于钙钛矿/HTL 界面处的大体积有机阳离子,可以保护水分。”

索比光伏网 https://news.solarbe.com/202410/30/383582.html

责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
“钙钛矿”亮相党的创新理论专题学习片!极电光能以“产学研用”深度融合,攀登能源新高峰来源:极电光能 发布时间:2025-12-10 11:08:18

在最新一期中,专题片聚焦光伏领域新质生产力的杰出代表——极电光能,深度解码了其以“产学研用”深度融合模式,引领钙钛矿光伏技术从实验室走向产业化的创新实践。“当前,钙钛矿技术正处于基础研究与产业化技术平行推进的阶段。”面向未来,极电光能表示将继续深化产学研用融合,以人才驱动创新,以创新引领产业,在钙钛矿这一前沿领域奋力攀登,为高质量发展新质生产力注入更多“极电动能”。

华东师范大学李晓东、方俊峰AM: ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层自组装来源:先进光伏 发布时间:2025-12-10 09:51:37

论文概览近年来,倒置钙钛矿太阳能电池在自组装分子使用方面效率迅速提高。技术亮点锚定强化:引入富羟基ITO纳米颗粒作为中间层,通过稳固的化学键合有效“锁住”自组装分子空穴传输层,从根本上抑制其在溶剂处理与长期运行中的脱附问题。通过计算P/Sn元素比,进一步评估了PSCs老化过程中SAM的脱附情况。如图4a所示,ITO/INPs/SAM基底上的钙钛矿显示出比ITO/SAM基底上的更强的PL猝灭,表明孔导电性更高,这归因于在钙钛矿涂覆过程中抑制了SAM的脱附。

青岛大学张安东、路皓、欧阳丹和北京师范大学薄志山等人JACS :通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:先进光伏 发布时间:2025-12-10 09:49:47

光学带隙测试结果表明,Rh-Py的带隙为2.63eV,其他CILs则分别为2.91eV、2.84eV和3.06eV。进一步实验表明,Rh-Py由于其强分子内偶极矩,能够显著调节银电极的功函数,而其他CILs如TZD-Py、Rh-Th和Rh-Ph则显示出较小的调节作用。这项研究将Rh-Py作为反溶剂添加剂应用于钙钛矿太阳能电池,以实现界面缺陷钝化和能级调节。

东华大学AFM:蒸汽辅助无损封装策略实现高效空气处理钙钛矿太阳能电池的全生命周期调控来源:知光谷 发布时间:2025-12-10 09:47:36

本文东华大学王宏志和张青红等人开发了一种无损封装策略,以实现空气处理PSCs的全生命周期管理。本工作为空气处理PSCs的全生命周期管理提供了一条有前景的途径。

AEM:原位双区域选择性锚定两性离子凝胶实现高效且机械耐用的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-10 09:46:24

在室内光照条件下,VIPS修饰的柔性器件效率超过40%。

南京工业大学晁凌锋&夏英东&陈永华AM:破解SnO₂团聚难题!磷酸盐缓冲策略实现钙钛矿电池26.4%高效率与超强稳定性来源:知光谷 发布时间:2025-12-10 09:45:26

SnO纳米颗粒溶液是目前制备高效溶液法钙钛矿太阳能电池中电子传输层的重要浆料。本文南京工业大学晁凌锋、夏英东和陈永华等人报道了一种磷酸盐缓冲合成策略,可有效稳定SnO胶体。基于此,钙钛矿太阳能电池实现了26.40%的高能量转换效率,并表现出优异的工作稳定性。精准调控表面化学状态,优化器件性能在弱碱性缓冲条件下,SnO薄膜表面羟基与氧空位达到平衡态,促进电荷提取、降低界面复合,最终使钙钛矿太阳能电池效率提升至26.40%。

金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

麦田能源:将光揉进荷兰的郁金香来源:麦田能源 发布时间:2025-12-09 16:14:44

种花,也种光在荷兰,风车与郁金香像是大地永恒的符号。麦田能源与本地伙伴携手,将智慧储能系统引入当地花厂,把收集的丰沛日光,转化为可储存、可调度、可复用的绿色动力。荷兰郁金香花厂能量小巨人麦田能源与本地合作伙伴携手,三套G-MAX工商业储能系统悄然落地。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

朱宗龙等人EES:金属茂盐作为可调控掺杂剂提升钙钛矿太阳能电池效率来源:知光谷 发布时间:2025-12-09 14:14:09

我们揭示了掺杂机制,并证明此类掺杂剂可将钙钛矿/OSC异质结处的空穴提取效率提升45%。使用金属茂盐掺杂剂的钙钛矿/OSC光活性层,相比使用传统LiTFSI基掺杂剂的薄膜,对湿气诱导降解的耐受性显著增强。显著增强器件界面稳定性与空穴提取金属茂盐掺杂剂及其反应副产物中性二茂铁能有效钝化钙钛矿表面,诱导能带弯曲并形成表面杂化态,从而提升空穴提取效率。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。