结果显示,控制器件和使用DBrS、DPSE、DPDSE处理的器件的激子解离效率分别为94.3%、96.7%、97.4%和96.9%,充电收集效率分别为82.0%、89.7%、89.2%和88.6%。结果显示,添加添加剂后,双分子复合减少,单分子或陷阱辅助复合的概率降低。结果显示,添加DBrS、DPSE和DPDSE后,τ1值分别缩短至0.147ps、0.243ps和0.287ps,表明激子解离增强。这些添加剂促进了受体纤维化,提高了结构秩序和结晶度。AFM和TEM观察证实了纯薄膜和SD薄膜中纤维网络的存在。
文章亮点总结1.首次将固体添加剂引入SS工艺制备OPV,为该工艺优化提供了新思路。图1.固体添加剂的性质。该研究成功开发了一种芳香族添加剂辅助的自发扩散工艺,通过调控溶液表面张力和成膜动力学,能够显著提升活性层薄膜的均匀性和OPV器件性能。研究成果以“SolidAdditivesforSpontaneouslySpreading-ProcessedOrganicPhotovoltaics”为题,发表于《AdvancedScience》上。至今已在Nat.Photonics、JACS、Joule、ScienceAdvances等期刊上发表论文30余篇。2024年9月,西湖光电正式对外提供大面积OPV制样服务。
器件架构的辐射稳定性。“与此同时,我们正在努力发展一种技术经济学理解,即如何以
CdTe 为基础的光伏器件具有竞争力地制造用于太空,以及它最适合哪些太空应用,”Lamb 说。研究人员将 CdTe
供应商 5N Plus、CTF
Solar在德国,与英国公司合作,包括制造技术中心、卫星应用 Catapult、Teledyne Qioptiq 和金属有机化学气相沉积 (MOCVD)
工具供应商 Aixtron。(消息来源:pv-magazine.com)
文章介绍无添加剂有机太阳能电池 (OSC)
通过消除与溶剂添加剂相关的加工复杂性,代表了向可扩展、稳定的光伏器件迈进的关键进步。然而,在没有活性层的情况下实现最佳的活性层形态仍然是一项艰巨的挑战
85.3%的初始效率。这项工作建立了一种简便而有效的策略,以同时提高无添加剂的OSC的效率和稳定性,为高性能有机光伏器件的规模化制造提供了蓝图。器件制备器件制备:ITO/PEDOT:PSS
6:NFA共混物膜在面内(30°x 90°)和面外(0° x 30°)方位角上积分的径向GIWAXS分布。e,单结有机光伏器件的Champion
J-V曲线。f,单结有机光伏器件的EQE曲线
文章介绍钙钛矿和有机半导体的宽带隙可调谐性使得钙钛矿-有机叠层太阳能电池的开发具有有希望的理论效率。然而,报道的钙钛矿-有机叠层太阳能电池的认证效率仍然低于单结钙钛矿太阳能电池的认证效率,主要
(TCO)薄膜实现高透光导电。在钙钛矿-有机叠层电池中,夹在BCP/SnOₓ与MoOₓ之间的溅射氧化铟锌层通过最小化光学与电学损耗,实现了24%的纪录效率。但溅射工艺(尤其是高温或高能粒子条件)可能
生产等问题。值得注意的是,目前钙钛矿材料的最低带隙(约1.2eV)限制了全钙钛矿多结光伏器件的发展(例如,四结及以上器件需要至少两个子电池的带隙小于1.15eV)。最近,通过在Pb-Sn钙钛矿薄膜中
Voltage Loss”为题发表在顶级期刊Advanced
Materials 上。研究亮点:三维结构电子受体:开发了一种新型3D结构的电子受体,有助于提高有机太阳能电池的性能。高PLQY和适度结晶度
:这种受体展现出高的光致发光量子产率和适中的结晶度,平衡了电池的效率和稳定性。低电压损失:采用这种受体的有机太阳能电池实现了高效率和低电压损失。研究内容:该研究专注于通过分子设计来提高电子受体的性能
利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,因其具有较高的光电转换效率和较好的稳定性,在光伏领域受到广泛关注。目前,这种新型太阳能电池已实现高达27%的认证光电转换效率,可与单晶硅电池
30%的环境中存放2800小时后,效率保持在初始值的95%以上;在65℃下热老化1500小时后,效率保持在初始值的90%以上。研究人员介绍,此项研究提供了一种行之有效的方法,有助于解决钙钛矿光伏器件和
文章介绍可拉伸有机太阳能电池(s-OSCs)的发展需要在机械顺应性和电学性能方面实现同步突破,其挑战根源在于有机半导体与金属电极之间固有的机械不匹配。基于此,南昌大学陈义旺等人提出了一种双相界面工程
,抑制裂纹扩展速度,并减少了界面机械不匹配现象。最终,在小面积柔性器件上实现了19.58%的PCE,这是迄今为止柔性有机太阳能电池(f-OSCs)中最高的PCE之一。值得注意的是,可拉伸器件在100
高非辐射复合能量损失(ΔEnr)的持续挑战仍然是提高有机太阳能电池(OSC)功率转换效率(PCE)的关键瓶颈。近日,北京航空航天大学孙晓波、孙艳明、林雪平大学Zhang Huotian通过在末端