香港中文大学&华东理工24年国家杰青:创新型表面钝化剂超宽浓度加工窗口:1-200 mg/mL!普适于五个钙钛矿体系!

来源:钙钛矿太阳能电池之基石搭建发布时间:2025-05-28 09:09:22

发表日期:May 26, 2025

第一作者:Fangyuan Ye

通讯作者:Yongzhen Wu(华东理工大学吴永真),Martin Stolterfoht(香港中文大学)

研究内容

提升倒置结构钙钛矿太阳能电池性能的关键在于有效抑制钙钛矿/C60界面的非辐射复合。

本研究创新性地采用1,6-双(丙烯酰氧基)-2,2,3,3,4,4,5,5-八氟己烷(简称BA-8FH)作为钙钛矿/C60界面的多功能夹层材料。

该材料具有1-200 mg/mL的宽浓度加工窗口,且制备重现性优异。BA-8FH的沸点(约90°C)低于钙钛矿退火温度(100°C),因此在退火过程中大部分材料会挥发,仅保留与钙钛矿产生强相互作用的单分子层(含氟基团与丙烯酰氧基)。紫外光电子能谱(UPS)证实,BA-8FH可优化钙钛矿/C60界面的能带排列,使非辐射复合显著降低,载流子寿命明显延长。

基于1.58 eV带隙钙钛矿的p-i-n结构器件实现了24.7%的光电转换效率(PCE),其开路电压(VOC)达1.21 V,填充因子(FF)为84%。封装器件在大气环境下连续最大功率点(MPP)追踪1200小时后,仍保持90%以上的初始效率(T90)。该工作为解决钙钛矿/C60界面复合损失这一长期难题提供了新策略,为消除先进钙钛矿器件中的关键复合损失开辟了道路。

图1. (a) 经BA-8FH处理的完整器件截面扫描电镜(SEM)图像,左侧标注各功能层结构。(b) 对照组与不同浓度BA-8FH处理器件的性能统计(每组10个器件)。(c) 钙钛矿表面可能分子组装机制示意图。

加工窗口

图2. (a) 石英/钙钛矿、HTL/钙钛矿、HTL/钙钛矿/ETL薄膜及完整器件(分别标记为Pero、HTL、p-i-n和device)在有/无BA-8FH处理时的PLQY测试结果。(b) 对照组与BA-8FH处理样品对总电压损失的贡献分解。(c) 光强依赖性准费米能级分裂(QFLS)测试结果(标注理想因子)。(d) 基于QFLS测试的拟J-V曲线(插图为关键参数)。(e) 电致发光(EL)成像图(比例尺1mm),右侧显示无量纲平均发光强度。

图3. (a) F 1s、C 1s和Pb 4f的高分辨XPS谱图对比。(b) 真空能级对齐时钙钛矿/C60界面的能带结构演变。(c) 二维模拟示意图。(d) 开路电压(VOC)与BA-8FH层缺陷间距(Ld)的模拟关系。

图4. 瞬态表面光电压(tr-SPV)与时间分辨荧光(TRPL)分析。(a) 515nm激光激发下(实线125kHz/虚线1kHz)不同结构的tr-SPV响应(纵轴偏移以便观察)。(b) 1kHz激发的归一化SPV对比。(c) 515nm/125kHz激发的TRPL衰减曲线。(d) HTL/pero/C60与HTL/pero/BA-8FH/C60体系的TRPL与tr-SPV时域对比(注:未注明基底均为ITO/MeO-2PACz)。

图5. (a-c) 优化钙钛矿层后对照组与BA-8FH处理器件的VOC、FF及PCE参数分布。(d) 冠军器件正反扫J-V曲线。(e) BA-8FH处理器件的认证J-V曲线。(f) 不同钙钛矿体系的PCE提升效果。(g) 1-sun光照下的最大功率点(MPP)追踪数据(标注初始PCE:对照组21.17%,处理组23.57%),并列示Vmpp与Jmpp参数。

器件制备

钙钛矿太阳能电池制备

基底处理:

图案化ITO玻璃依次在超声浴中用洗涤剂、去离子水、乙醇和丙酮各清洗15分钟。

紫外臭氧(UV-Ozone)处理30分钟后,转移至氮气手套箱。

空穴传输层(HTL)沉积:

将MeO-2PACz乙醇溶液(1 mmol/mL)以3000 rpm旋涂30秒,100°C退火10分钟。

钙钛矿层制备:

前驱体溶液:将1.5 M FAPbI₃和MAPbBr₃溶液(DMF:DMSO = 4:1, v/v)与1.5 M CsI溶液混合,并添加25 mol% MACl(DMSO溶剂)以优化结晶。

旋涂工艺:4000 rpm旋涂40秒(加速5秒),结束前5秒以连续液流(约1秒)滴加300 μL氯苯,随后100°C退火1小时。

BA-8FH夹层沉积:

将1-200 mg/mL的BA-8FH异丙醇溶液以6000 rpm旋涂(加速3秒),100°C退火10分钟。

电子传输层(ETL)与电极蒸镀:

在真空腔(p = 10⁻⁷ mbar)中依次沉积:

C60(30 nm,0.2 Å/s)

BCP(8 nm,0.2 Å/s)

铜电极(100 nm,0.6 Å/s)


索比光伏网 https://news.solarbe.com/202505/28/389695.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
合肥新站钙钛矿产业大会召开,全力打造“长三角钙钛矿光伏技术特色产业园”来源:钙钛矿工厂 发布时间:2025-12-29 09:47:39

12月26日下午,合肥新站高新区钙钛矿光伏产业创新发展会正式召开,高校专家、产业链企业金融机构、科创孵化平台代表齐聚新站共话钙钛矿光伏产业发展新机遇。

中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

南京工业大学曹久朋&秦天石AEL:调节宽带隙钙钛矿结晶并抑制相位分离制备高性能钙硅叠层器件来源:先进光伏 发布时间:2025-12-23 10:58:16

论文概览宽带隙钙钛矿太阳电池是叠层光伏器件的关键组成部分。然而宽带隙钙钛矿中较高的溴离子含量容易导致复杂的结晶过程和薄膜质量的降低。光稳定性测试中PA改性器件在1000小时连续光照老化后保持90.1%初始效率,远超对照组,证明2D钙钛矿通过结晶调控与相分离抑制实现钙硅叠层器件光电转换效率和长期稳定性的协同突破。这项工作为制备高质量宽带隙钙钛矿以及高性能钙硅叠层太阳能电池提供了重要的材料设计以及工艺路线指导。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

青岛科技大学周忠敏&中科院青岛生物能源与过程研究所逄淑平最新JACS:基于软硬酸碱理论设计硫醇交联剂,钙钛矿/SAM界面强韧化来源:先进光伏 发布时间:2025-12-22 16:34:53

论文概览针对倒置结构钙钛矿太阳能电池中钙钛矿/自组装单分子层异质界面机械稳定性差、制约器件长期可靠性的关键瓶颈,青岛科技大学与中国科学院青岛生物能源与过程研究所联合团队创新性地基于软硬酸碱理论,设计并筛选出一系列硫醇(-SH)基交联剂,用于强化界面化学键合并提升稳定性。

港科大周圆圆、港理工蔡嵩骅等人NC:揭秘钙钛矿电池性能的“隐形杀手”——晶内杂质纳米团簇来源:先进光伏 发布时间:2025-12-22 16:29:28

香港科技大学周圆圆、香港理工大学蔡嵩骅等研究团队,通过低剂量扫描透射电子显微镜首次在铯掺杂混合阳离子钙钛矿薄膜中,发现了一种新型亚稳态晶粒内杂质纳米簇。核心技术亮点首次发现晶粒内隐藏杂质:利用超低剂量扫描透射电镜,首次在原子尺度上直接观测并解析了隐藏在钙钛矿晶粒内部的亚稳态ABX型杂质纳米团簇的晶体结构。

Joule 崔光磊、唐波 喷雾制备钙钛矿 曲面器件23.2% 溶剂工程 强弱络合剂组合实现局部高浓度前驱体策略来源:钙钛矿太阳能电池文献精读集锦 发布时间:2025-12-22 16:15:40

本文提出局部高浓度(LHC)前驱体策略,通过强/弱配体溶剂组合调控溶剂化结构,使钙钛矿在喷雾沉积过程中于液滴内实现均匀受限的体相预成核,成功制备出高质量钙钛矿薄膜,实现了高效、高湿度耐受、可在复杂曲面沉积的钙钛矿光伏器件。

同济大学材料科学与工程学院陆伟团队关于高熵钙钛矿氧化物材料用于低频电磁波吸收的最新研究成果发表于《科学·进展》来源:钙钛矿材料和器件 发布时间:2025-12-22 13:52:25

论文第一完成单位为同济大学材料科学与工程学院。同济大学陆伟教授与袁宾研究员为论文通讯作者。陆伟教授团队以电磁功能材料为主要研究对象,在多功能集成电磁防护材料等方向进行了系统性研究。在国家重点研发计划、国家自然科学基金等项目的支撑下,近期多项电磁防护材料研究成果发表于高水平期刊。