优化D18分子堆叠,进而提升能量转换效率(PCE)。实验结果表明:当CR掺量为5
wt%(以D18质量为基准)时,刚性基底OSCs获得19.25%的优异PCE;而含50 wt%
CR的器件在
保持较高光伏性能(PCE=15.95%)的同时展现卓越延展性,其断裂起始应变高达23.5%。最终,采用5 wt%
CR制备的超柔性OSCs兼具高性能与机械稳定性,实现16.91%的显著PCE。原文
,在二元体系中实现了 18.0% 的功率转换效率
(PCE),在三元器件中实现了 20.4% 的功率转换效率 (PCE),电压损耗大大降低了 0.508V,这是当前 OSC
的最高值之一
。综上所述,这项工作为开发低电压损耗和高 PCE 的 OSCs 提供了新的见解和研究方向。该论文近期以“3D‐Architectured
Acceptor with High
电子传输;TRPL、SCLC测试表明非辐射复合被显著抑制,陷阱态密度降低至1.67×10¹⁶ cm⁻³。器件性能提升显著:1.65 eV器件PCE达23.19%,VOC高达1.259 V,FF为
83.73%,JSC为21.99 mA cm⁻²;1.68 eV器件PCE达22.38%,VOC为1.265 V;VOC损失低至0.391 V,接近理论极限。叠层器件突破30%:以优化的1.65 eV前电池
%(p-i-n低带隙)的功率转换效率(PCE),显著提升了器件性能和可重复性。机制解析:FIPA通过F…N–H氢键抑制钝化剂与钙钛矿的过度反应,从而允许使用高浓度钝化剂而不影响电荷传输。这种机制为高效
,经过PEAI/
FIPA处理后,用IPA或FIPA冲洗的钙钛矿薄膜的XRD图谱。c,基于a中描述的处理方式对应的器件的PCE,基于七个统计样本(中心值:平均值;误差条:标准差)。d,基于b中描述的
PEAI/IPA 时效率最高(23.87%),而 SP 在 20-100 mM 范围内 PCE 稳定在
21%-25%。例如,100 mM PEAI/FIPA 经清洗后 PCE 达 22.41%,而相同
浓度 IPA 处理后因残留厚低维相导致 PCE 仅
11.48%。溶剂比例兼容性混合溶剂中 IPA 体积分数(φIPA)在 5%-40% 范围内均有效,其中 φIPA=20% 时 PCE 最高。纯
₂Br 钙钛矿太阳能电池(PSC)展现出了令人瞩目的 14.34%的功率转换效率(PCE)。此外,未封装的器件在环境条件(相对湿度 15 - 20%)下放置 30 天后,仍保持其初始 PCE 的 95%。原文:https://doi.org/10.1039/D5CC02643A
和NAMI在DMSO-d6中的¹H NMR谱图,以及85℃老化24小时后FAI与NAMI混合物的¹H NMR谱图f) 不同表面钝化剂处理前后太阳能电池光电转换效率(PCE)统计对比(钝化剂以异丙醇最佳
生产效率和一致性。2. 进一步提高效率和稳定性:尽管SP策略已经显著提高了钙钛矿太阳能电池的功率转换效率(PCE),但未来可以通过优化钝化剂的选择和浓度,以及改进洗涤步骤,进一步提高效率和稳定性。原文链接:https://doi.org/10.1038/s41560-025-01791-z
柔性钙钛矿基单结和串联太阳能电池的功率转换效率(PCE)已分别超过25%和29%,被认为是便携式和可穿戴光电子器件(包括建筑一体化光伏应用)的理想选择。与其他薄膜技术和主流硅技术相比,钙钛矿薄膜
和进展,并探讨了大规模生产技术、柔性钙钛矿模块的未来前景以及封装设计,强调了f-PSCs在现代能量收集技术中的潜力。研究亮点1.高效率与柔性结合:柔性钙钛矿单结和串联太阳能电池的PCE分别超过25%和
去除过量钝化剂。该策略具有宽泛的工艺窗口,对钝化剂浓度偏差具有高容忍度,适用于多种器件结构、钙钛矿组分和器件面积,最终实现了高功率转换效率(PCE),有望提升工业生产的可扩展性和良率。研究亮点1.创新