溶剂工程和饱和钝化策略!西湖大学王睿&浙江大学薛晶晶用于改善钙钛矿太阳能电池缺陷钝化和再现性的氟化异丙醇

来源:钙钛矿学习与交流发布时间:2025-06-13 15:48:28

摘要

第一作者:西湖大学王思思博士

通讯作者:西湖大学王睿&浙江大学薛晶晶

表面缺陷钝化对于提高钙钛矿太阳能电池的效率和稳定性至关重要。然而,其可重复性和普遍适用性尚未得到充分探索,这限制了大规模生产。在此,西湖大学王睿&浙江大学薛晶晶我们介绍团队研究了一种基于氟化异丙醇的钝化策略,该策略可通过仅一层薄的低维钙钛矿实现表面缺陷的完全钝化,且不干扰电荷传输。氟化异丙醇降低了钝化剂分子与钙钛矿的反应活性,并允许使用高浓度钝化剂,确保缺陷完全钝化。随后用氟化异丙醇和异丙醇的混合溶剂冲洗,去除多余的钝化剂分子。我们证明,该策略具有宽泛的工艺窗口,对钝化剂浓度的偏差具有高容忍度,并适用于各种器件架构、钙钛矿成分和器件面积。该方法可实现高光电转换效率,并有望提高工业制造中的可扩展性和生产良率。

饱和钝化策略

饱和钝化策略(SP)通过氟化异丙醇(FIPA)的溶剂工程、氢键调控和

两步法工艺设计,解决了传统钝化中 “过度反应” 与 “清洗不彻底” 的核心矛盾,实现了缺陷饱和覆盖、低维相精准控制、宽工艺兼容性的三重突破。其工业化潜力体现在对浓度偏差的高容忍度、大面积效率提升及浸涂法适配。

一、设计原理:抑制反应性与精准清洗的协同作用

1. 两步法工艺的分子机制

第一步:高浓度钝化剂饱和吸附

使用 100 mM PEAI/FIPA 溶液旋涂,利用 FIPA 中氟原子与钝化剂 N-H 基团的强氢键作用,使 PEAI 以非离子化状态吸附于钙钛矿表面,避免传统溶剂(IPA)中因离子化导致的过度刻蚀。AR-XPS 显示,FIPA-CP 模式下 PEAI 的 C-N/FA N 比率显著低于 IPA-CP,表明 FIPA 抑制了钝化剂向钙钛矿内部的渗透。

第二步:FIPA/IPA 混合溶剂定向清洗

FIPA 的低介电常数和强清洗能力可去除表面未结合的钝化剂,仅保留超薄 n=1 低维相。例如,50 mM PEAI/FIPA 经 FIPA 清洗后,表层 C-N/FA N 比率趋近于 0,而 IPA 清洗仍残留部分钝化剂,说明 FIPA 对深层残留的去除更彻底。

2. FIPA 的独特调控作用

氢键主导的反应性抑制FTIR 显示,PEAI 在 FIPA 中因 F…N-H 氢键作用,N-H 振动峰从 1480 cm⁻¹ 红移至 1487 cm⁻¹,表明分子间作用力增强,反应活性降低。¹H NMR 进一步证实,PEAI 在 FIPA 中发生脱质子,形成类似苯胺的结构,减少与 PbI₂的离子交换反应。

相转变抑制XRD 显示,PEAI/IPA 处理后生成明显的 n=2 相(2θ=4.7° 和 5.4°),而 FIPA 处理后 n=2 相峰强显著降低,n=1 相成为主导,避免厚低维层对电荷传输的阻碍。

二、关键作用:从缺陷控制到工业化适配

1. 缺陷钝化与电荷传输的平衡

非辐射复合抑制PL 光谱显示,SP 处理后荧光强度较对照组提升 50% 以上,准费米能级分裂(QFLS)改善 17.5 mV,表明表面缺陷引发的载流子复合显著减少。

界面电阻优化TRPL 数据显示,FIPA 清洗虽略微降低 PL 强度,但显著提升电荷提取效率,使填充因子(FF)从 CP 的 22.78% 提升至 75.57%,平衡了钝化效果与载流子传输。

2. 宽工艺窗口的实验验证

浓度容忍度传统方法(CP)仅在 10 mM PEAI/IPA 时效率最高(23.87%),而 SP 在 20-100 mM 范围内 PCE 稳定在 21%-25%。例如,100 mM PEAI/FIPA 经清洗后 PCE 达 22.41%,而相同浓度 IPA 处理后因残留厚低维相导致 PCE 仅 11.48%。

溶剂比例兼容性混合溶剂中 IPA 体积分数(φIPA)在 5%-40% 范围内均有效,其中 φIPA=20% 时 PCE 最高。纯 FIPA 清洗虽去除更多钝化剂,但 PL 强度最低,说明适度保留 n=1 相可增强缺陷捕获。

3. 规模化生产的适配性

大面积效率提升1 cm² 器件中,SP 使 PCE 从参考器件的 21.6% 提升至 24.5%,增幅 13.6%,显著高于 0.1 cm² 器件的 8.2% 增幅,归因于大面积下缺陷密度更高,SP 的饱和钝化优势更显著。

浸涂法兼容性无需旋涂设备,通过浸渍 FIPA/PEAI 溶液(2-5 秒)并清洗,仍可实现 PCE 超 24%,适合连续化生产流程。

4. 长期稳定性强化

ISOS-L-3 测试显示,SP 器件在 65℃、0.8 Sun 光照下 1000 小时后保留 80% 初始效率,而 CP 器件因钝化剂渗透导致效率骤降。FIPA 抑制渗透的特性(AR-XPS 深度分析)是稳定性提升的关键。

本工作中的所有器件性能


器件制备

 一、钙钛矿薄膜制备

1. n-i-p 结构(顺序沉积法)

材料:Cs0.05FA0.95PbI3

PbI₂层:1.4M PbI2+0.07M CsI,溶剂为 DMF/DMSO(94:6 体积比),搅拌过夜。FAI/MACl 层:80 mg FAI + 13 mg MACl 溶于 1 mL IPA。旋涂工艺PbI₂层:1500 rpm,40 秒,无退火。FAI/MACl 层:1800 rpm,40 秒。退火:90°C(氮气手套箱)60 秒 → 150°C(开放环境,湿度 30–40%)10 分钟。含 Br 钙钛矿(Cs0.05FA0.95PbI3)0.8(FAPbBr3)0.2)

前驱体:1.5 M PbI2+0.075M CsI+ 0.375M FAPbBr3晶体,DMF/DMSO(90:10)溶解,其余步骤同上。

 2. p-i-n 结构(反溶剂法)

材料:Cs0.05MA0.05FA0.90PbI3

前驱体制备:1.8 M 混合溶液(CsI/FAI/MAI/PbI2),添加 9 mol% PbI2 + 25mol%MACl+ 12mg Pb(SCN)2,溶剂为 DMF/DMSO(710 µL/190 µL)。

旋涂工艺

第一步:1000 rpm,10 秒;

第二步:5000 rpm,40 秒(第 25 秒滴加 300 µL anisole 反溶剂)。

退火110°C,30 分钟(氮气手套箱)。

空气环境制备FAPbI3:

前驱体:1.8 M PbI2 + FAI+ MACl+PACl,DMF/NMP(840 µL/160 µL)溶解。

旋涂:第二步 4000 rpm 时滴加 200 µL 乙醚反溶剂,退火 150°C(湿度 20–30% 开放环境)。

 二、器件组装流程

 1. n-i-p 结构器件

基底处理:

FTO 玻璃:洗涤剂→水→丙酮→IPA 超声各 20 分钟,紫外臭氧处理 30 分钟。

SnO₂电子传输层化学浴沉积(CBD):尿素 / HCl/TGA/SnCl₂混合液,90°C 反应 5 小时,170°C 退火 60 分钟。层叠结构:FTO/SnO2/钙钛/钝化层/Spiro-OmetaD/MoO3Ag

Spiro-OmetaD:72.3 mg/1 mL CB + 25.5 µL t-BP + 15.5 µL Li-TFSI,3000 rpm 旋涂 30 秒。

电极:真空蒸镀 10 nm MoO₃ + 100 nm Ag。

2. p-i-n 结构器件

ITO 玻璃:清洗同上,紫外臭氧处理 25 分钟。

空穴传输层(HTL)

2PACz 层:2 mg/mL 乙醇溶液,3000 rpm 旋涂 60 秒,

120°C 退火 30 分钟。NiOx/Me-4PACZ层:NiOx

(20 mg/mL水)旋涂后 150°C 退火,Me-4PACZ(乙醇 / DMF=3/1)旋涂退火。

层叠结构:ITO/HTL钙钛矿/钝化/LiF/C60/BCP/Ag

电子传输层:蒸镀 0.7 nm LiF + 40 nm C₆₀ + 6 nm BCP(速率0.1–0.2Å/s)。

电极:120 nm Ag(速率1.5Å/s)。

三、饱和钝化策略(SP)关键步骤

 1. 两步法工艺

钝化剂涂覆

溶液:高浓度钝化剂(如 100 mM PEAI/FIPA),20 µL 旋涂 4000 rpm,40 秒。

混合溶剂清洗

溶剂:FIPA/IPA(体积比 φIPA=5–40%,优选 20%),20 µL 旋涂 4000 rpm,40 秒。

p-i-n 结构额外步骤MAI 预处理(0.5 mg/mL DMSO/IPA=1/150,4000 rpm,30 秒)。

 2. 核心参数

钝化剂类型PEAI、CF3-PEAI、OAI、OATsO 等。

浓度窗口20–100 mM(传统方法仅 10 mM 左右有效)。

兼容性支持旋涂、浸涂(2–5 秒浸渍),适用于 1 cm² 大面积器件。

关键优势总结

宽工艺窗口对浓度、湿度、制备方法容忍度高,适合工业化批量生产。

高效稳定光电转换效率(PCE)最高达 26.0%,1000 小时稳定性测试保留 80% 效率。

图文信息

图 1 | 配体的渗透与嵌入。a,FIPA 和 IPA 的分子结构示意图以及传统钝化(CP)和饱和钝化(SP)过程。绿色文字用于强调传统溶剂与氟化溶剂在化学式上的差异。b-d,不同浓度和钝化模式处理的薄膜在电子出射角为 0°、45° 和 75° 时的 C-N 与甲脒(FA)N 的比率(5 mM(b)、10 mM(c)和 50 mM(d))。背景颜色用于区分和强调化学配方和钝化方法的差异:粉色代表 FIPA-CP,蓝色代表 IPA-CP,绿色代表 FIPA-SP,紫色代表 IPA-SP 钝化方法。e,f,分别使用 FIPA-CP 和 IPA-CP 方法沉积的钙钛矿(e)和 PbI₂(f)薄膜的 X 射线衍射(XRD)图谱。g,对照薄膜以及经 IPA-CP 和 FIPA-CP 处理的钙钛矿薄膜的扫描电子显微镜(SEM)图像。结果表明,PEAI 在 FIPA 中的渗透能力和反应活性降低。

图 2 | 反应活性降低的机制。a,异丙醇(IPA)和 PbI₂浸渍的 IPA(左)以及氟化异丙醇(FIPA)和 PbI₂浸渍的 FIPA(右)的傅里叶变换红外光谱(FTIR)。b,将等质量 PEAI 溶解于 IPA、FIPA 和氘代异丙醇(DIPA)后处理 PbI₂薄膜的 X 射线衍射(XRD)图谱。c,纯 FIPA 和 PbI₂浸渍的 FIPA 的 19F 固态核磁共振(ssNMR)谱。d,PEAI 粉末、PEAI/IPA 溶液和 PEAI/FIPA 溶液的 FTIR 光谱。e,纯 FIPA 溶剂和溶解 PEAI 的 FIPA 的 19F 核磁共振(NMR)谱。f,PEAI/IPA 溶液和 PEAI/FIPA 溶液的 1H NMR 谱,放大的插图显示了烷基氢共振区域的化学位移。

图 3 | 增强饱和钝化策略(SP)的有效性。

a, 经 PEAI/IPA 处理后再用 IPA 或 FIPA 清洗的钙钛矿薄膜的XRD图谱。

b, 经 PEAI/FIPA 处理后再用 IPA 或 FIPA 清洗的钙钛矿薄膜的 XRD 图谱。

c, 对应图 a 中处理条件的器件光电转换效率(基于 7 个统计样本,中心:平均值;误差线:标准差)。

d, 对应图 b 中处理条件的器件 PCE(基于 11 个统计样本,中心:平均值;误差线:标准差)。灰色圆圈符号为 PCE 的统计平均值。

e,f, 对照钙钛矿薄膜及经图 a 和 b 中处理的钙钛矿薄膜的光致发光(PL)强度。每种处理用特定符号表示:梅花符号表示高浓度钝化剂初始处理;菱形符号表示用 IPA 清洗;心形标记表示用 FIPA 清洗。

g, 经 PEAI/FIPA 预处理的钙钛矿薄膜在不同体积百分比 IPA(φIPA)混合溶剂清洗后的 PL 强度。

h, 经 100 mM PEAI/FIPA 溶液预处理的钙钛矿样品的 PCE 随 PEAI 浓度变化的曲线。

i, 经 φIPA=20% 混合溶剂清洗的钙钛矿样品的 PCE 随 PEAI 浓度变化的曲线。

j, 使用 20 mM 浓度和 φIPA=15% 的 FIPA-SP 方法处理的各种铵配体钙钛矿的 PCE 箱线图(基于 26 个统计样本,须线:最大值和最小值;箱限:第 25 和第 75 百分位数;中心:平均值)。

图 4 | SP 策略的普适性。a–h,不同制备工艺下参考器件和基于 SP 策略的器件的J–V曲线及插入的相应直方图(23–42 个电池,拟合高斯分布)。

a,铟锡氧化物(ITO)/ 自组装单层膜(SAM)/Cs₀.₀₅FA₀.₉₅PbI₃(PEAI)/LiF/C₆₀/BCP/Ag 器件,钙钛矿在氮气气氛中顺序沉积,使用 23 个电池推导统计数据。

b,ITO/SAM/(Cs₀.₀₅FA₀.₉₅PbI₃)₀.₈(FAPbBr₃)₀.₂(CF₃-PEAI)/LiF/C₆₀/BCP/Ag 器件,钙钛矿在氮气气氛中顺序沉积,使用 31 个电池推导统计数据。

c,ITO/SAM/(Cs₀.₀₅FA₀.₉₅PbI₃)₀.₆(MAPbBr₃)₀.₄(CF₃-PEAI)/LiF/C₆₀/BCP/Ag 器件,钙钛矿在氮气气氛中顺序沉积,使用 42 个电池推导统计数据。

d,ITO/SAM/Cs₀.₀₅MA₀.₀₅FA₀.₉₀PbI₃(EDAI₂+2MTEAI)/LiF/C₆₀/BCP/Ag 器件,钙钛矿在氮气气氛中反溶剂沉积,使用 37 个电池推导统计数据。

e,ITO/SAM/Cs₀.₀₅MA₀.₂₂FA₀.₇₃PbI₂.₃₁Br₀.₆₉(CF₃-PEAI)/LiF/C₆₀/BCP/Ag 器件,钙钛矿在氮气气氛中反溶剂沉积,使用 24 个电池推导统计数据。

f,FTO/SnO₂/FAPbI₃(PEAI)/spiro-OmetaD/MoO₃/Ag 器件,钙钛矿在湿度 25–30% 的空气环境中反溶剂沉积,使用 41 个电池推导统计数据。

g,1 cm² ITO/SAM/Cs₀.₀₅MA₀.₀₅FA₀.₉₀PbI₃(EDAI₂+2MTEAI)/LiF/C₆₀/BCP/Ag 器件,钙钛矿在氮气气氛中反溶剂沉积,使用 30 个电池推导统计数据。

h,1 cm² ITO/SAM/Cs₀.₀₅FA₀.₈MA₀.₁₅Pb (I₀.₇₅Br₀.₂₅)₃(CF₃-PEAI)/LiF/C₆₀/BCP/Ag 器件,钙钛矿在氮气气氛中反溶剂沉积,插入图为器件照片。

i,旋涂和浸涂方法实施的 SP 策略效果对比(基于 17 个统计样本,须线:最大值和最小值;箱限:第 25 和第 75 百分位数;中心:平均值)。

j,SP 策略普适性的示意图。

04

论文信息

论文标题:Fluorinated isopropanol for improved defect passivation and reproducibility in perovskite solar cells

发表期刊:《nature energy》

发表时间:2025年6月9日

作者:Sisi Wang, Weizhong Tian, Zhendong Cheng, Xiaohuo Shi, Wei Fan, Jingjing Zhou, Danyu Gu, Jingjing Xue & Rui Wang

查看原文(点击底部阅读原文跳转):

https://doi.org/10.1038/s41560-025-01791-z



索比光伏网 https://news.solarbe.com/202506/13/390385.html
责任编辑:wangqing01
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
共筑产业创新高地,极电光能与悉尼新南威尔士大学成立钙钛矿国际联合实验室来源:极电光能 发布时间:2026-01-16 10:54:39

1月14日,“钙钛矿国际联合实验室揭牌暨产学研战略合作签约仪式”在极电光能宛山湖园区隆重举行。仪式上,极电光能与悉尼新南威尔士大学、无锡市产业创新研究院签署战略合作协议,并为极电光能与悉尼新南威尔士大学共建的“钙钛矿国际联合实验室”揭牌,标志着国际顶尖科研力量与本土龙头企业在钙钛矿光伏领域的合作迈入新阶段。

伊利诺伊州签署清洁能源法案,将推动太阳能光伏、电池储能和VPP的投资来源:SOLARZOOM光储亿家 发布时间:2026-01-15 16:20:00

伊利诺伊州州长JB·普利茨克已签署一项清洁能源法案,将促进该州太阳能光伏和储能投资,包括其他方面。

协鑫集成王皓正:三端钙钛矿叠层电池破局效率天花板,产业化落地进入攻坚期来源:索比光伏网 发布时间:2026-01-14 14:57:04

1月14日,碳索2025·第四届光能杯创新分享会在苏州举行,协鑫集成研发总监王皓正博士发表主题演讲,深入解析“钙钛矿叠层电池产业化的必然趋势”,系统阐述三端叠层架构的技术优势、工程化难点及突破路径,为行业突破效率天花板、实现高质量产业化提供关键思路。

共计1480万元!云南大学两项仪器设备采购助力钙钛矿领域攻关来源:钙钛矿光链 发布时间:2026-01-14 09:53:15

近日,云南大学发布34项仪器设备采购意向,预算总额达1.01亿元,涉及超快载流子动力学成像系统、原位微纳结构分析系统、全自动生化分析仪、全自动血细胞分析工作站、全光谱流式细胞仪、液相色谱串联质谱检测系统等,预计采购时间为2025年9月~2026年2月。

上海交大陈汉EES:29.58%!又是SAM与钙钛矿间的分子桥接剂!高效光稳定全钙钛矿叠层电池!来源:钙钛矿人 发布时间:2026-01-14 08:51:49

上海交通大学陈汉等人引入一种分子桥接剂,它既能与SAM基底共轭,又能与钙钛矿表面配位,从而增强空穴收集异质界面处的化学与电子耦合。通过这一策略,获得了光稳定、带隙1.76 eV、光电性能提升且晶格稳定的钙钛矿吸收层,使单结钙钛矿太阳能电池实现20.79%的光电转换效率(认证值20.35%)。当该电池与1.25 eV的Sn-Pb钙钛矿底电池集成时,所得两端单片全钙钛矿叠层太阳能电池效率达29.58%,且封装器件在960小时连续最大功率点运行后仍保持初始效率的90%。

华东师范大学方俊锋最新Nature Communications:一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池来源:钙钛矿太阳能电池 发布时间:2026-01-14 08:37:34

2026年1月12日华东师范大学Wenxiao Zhang&方俊锋&林雪平大学高峰于Nature Communication刊发一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池的研究成果,开发了一种策略,将铅粉作为前驱体,并进行PbF₂后处理,分别替代SnF₂在成膜和表面缺陷钝化中的作用。Pb²⁺中的d电子极化增强了其与F⁻的结合,使其对钙钛矿的反应惰性。在本研究中,不含SnF₂的器件效率从16.43%提高到24.07%。在最大功率点下,85°C 运行 550 小时后,电池仍能保持其初始效率的60%。

再度发布钙钛矿新品!炎和科技携手讯美智联定义智能安防能源新范式来源:钙钛矿工厂 发布时间:2026-01-09 09:44:20

近日,炎和科技携手深圳市讯美智联电子有限公司,在CES2026国际消费电子展尚重磅发布联合打造的两款“永不充电”创新产品——钙钛矿光能智能门铃与智能摄像头。未来,炎和科技将持续深化与讯美智联等行业优秀伙伴的合作,不断拓展钙钛矿技术在消费电子领域的应用边界,为全球用户打造更便捷、高效、环保的智能生活新体验。

钙钛矿技术开辟新天地!光翼创新推出三款颠覆性钙钛矿产品来源:钙钛矿工厂 发布时间:2026-01-08 11:34:09

光伏窗帘:0.1mm超薄柔性设计实现家庭能源自给自足作为本届展会的亮点之一,光翼创新推出的柔性钙钛矿光伏产品标志着行业里程碑式的突破。从家庭能源自给自足到绿色办公升级,再到户外移动能源供应,光翼创新在2026年国际消费电子展上以三款颠覆性产品充分展示了钙钛矿技术的多场景适应能力。关于光翼创新光翼创新是一家专注于钙钛矿光伏技术研发与应用的高科技企业。

又一钙钛矿合资公司将成立!晶科×晶泰签署AI高通量叠层太阳能电池项目合作协议!来源:钙钛矿工厂 发布时间:2026-01-08 11:25:48

近日,晶科能源宣布,与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳能电池合作研发。基于双方坚实的技术基础与合作规划,晶科能源预计钙钛矿叠层电池有望在未来三年左右迈向规模化量产。

晶科能源与晶泰科技签署AI高通量叠层太阳能电池项目合作协议来源:晶科能源 发布时间:2026-01-08 10:22:16

全球极具创新力的光伏企业晶科能源近日宣布,与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳能电池合作研发。此举标志着两家在不同技术领域的领军者强强联合,正式开启在钙钛矿叠层等下一代光伏技术领域的深度协同,旨在通过“AI+机器人”重塑光伏研发范式,加速颠覆性技术的研发与产业化进程。

从化学到太阳能电池:材料创新在钙钛矿光伏革命中的核心作用来源:钙钛矿材料和器件 发布时间:2026-01-07 10:33:54

钙钛矿太阳能电池已经成为光伏领域的一项变革性技术。自2009年问世以来,因其卓越的效率、低成本的加工工艺和可调谐的光电特性,十年内已成为下一代光伏技术的主要候选者。然而,长期稳定性、铅毒性和工业可扩展性方面的挑战仍然是其大规模商业化的主要障碍。本文探讨了材料创新在克服这些障碍中的核心作用,重点关注成分工程、分子添加剂与钝化、界面化学以及二维/准二维钙钛矿系统的进展。特别关注了电荷传输架构的演变和新兴的商业前景。我们还强调了从追求性能的研究转向注重耐用性和可制造性策略的重要性。文章最后对未来钙钛矿太阳能电池的发展方向提出了建议,包括标准化测试、预测性材料设计和环境友好型制造的需求。