
有机太阳能电池(OSCs)凭借其机械柔性优势,为可穿戴设备提供了独特的应用前景。鉴于此,青岛大学材料科学与工程学院/功能染料与技术研究院王逸凡副教授、薄志山教授、刘亚辉教授团队与美国西北大学Antonio Facchetti、Tobin J. Marks教授团队联合在《Joule》上发表题为“High-efficiency, ultra-flexible organic solar cells enabled by chloroprene rubber as both a non-volatile solid additive and plasticizer”的文章。本研究报道了在D18:L8BO体系中引入氯丁橡胶(CR)作为第三组分的技术方案。CR不仅作为增塑剂通过引入弹性链段并促进三维非共价交联网络形成,从而增强OSC光敏层的拉伸性与机械鲁棒性;同时作为非挥发性添加剂优化D18分子堆叠,进而提升能量转换效率(PCE)。实验结果表明:当CR掺量为5 wt%(以D18质量为基准)时,刚性基底OSCs获得19.25%的优异PCE;而含50 wt% CR的器件在保持较高光伏性能(PCE=15.95%)的同时展现卓越延展性,其断裂起始应变高达23.5%。最终,采用5 wt% CR制备的超柔性OSCs兼具高性能与机械稳定性,实现16.91%的显著PCE。





原文链接:10.1016/j.joule.2025.101996.
创新点:
1.双重功能设计
首次利用氯丁橡胶(CR)同时作为非挥atile固体添加剂(增强D18分子堆叠,提升电荷传输效率)和增塑剂(通过弹性链段与三维非共价交联增强光敏层延展性),突破传统绝缘弹性体降低光伏性能的局限。
2.效率-柔性协同优化
在50 wt% CR高掺量下实现15.95% PCE与23.5%断裂起始应变的罕见平衡,5 wt% CR时刚性器件效率达19.25%,超柔性器件达16.91%,均刷新同类OSC性能纪录。
3.卤素-π键协同交联机制
通过XPS、MD模拟和DFT计算证实CR的Cl原子与D18的N/S原子形成卤素键,同时CR的π键与D18骨架产生π-π堆叠(距离≈3.4 Å),构建三维动态网络,同步提升机械稳定性与光伏性能。
未来展望:
1.材料普适性拓展
探索CR在其他高效OSC体系(如PM6:Y6)的应用,验证其对不同给/受体材料的兼容性(当前仅在D18:L8BO/PM6:L8BO验证)。
2.长期稳定性研究
需评估超柔性OSC在复杂形变(弯折+拉伸)、湿热环境下的器件退化机制,优化封装策略以实现>10年服役寿命。
3.产业化工艺开发
研究CR在大面积卷对卷印刷中的分散均一性控制,开发低温溶液加工工艺以降低制造成本。
索比光伏网 https://news.solarbe.com/202506/24/390663.html

