苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!

来源:钙钛矿与OPV薄膜太阳能发布时间:2025-12-23 14:15:02

2025年12月18日苏州大学袁建宇团队于《Advanced Functional Materials》发表Homogeneously Contacted Co-Self-Assembled Monolayer Enables over 26% Inverted Perovskite Solar Cells,研究设计合成了含不同氟取代的二甲基吖啶基自组装单分子层(DCA-0F、DCA-1F、DCA-2F),将其与传统 MeO-2PACz 按最优比例混合构建共 SAMs,解决了咔唑基 SAMs 易聚集、界面覆盖不完全的关键问题,通过空间位阻调控和氟原子界面作用优化,使倒置钙钛矿太阳能电池实现 26.11% 的冠军光电转换效率,且在 1000 小时稳定测试中保持 90% 初始性能,为高效稳定 PSCs 的界面工程提供了可行路径!

图片

背景问题:传统咔唑基 SAMs(如 MeO-2PACz)作为倒置 PSCs 的空穴传输层时,因分子结构特性易在溶液中形成胶束,导致界面覆盖不完全,引发电荷泄漏和非辐射复合增加;同时其与基底、钙钛矿层的结合作用较弱,既限制器件效率提升,又影响长期稳定性。

核心策略:DCA 分子采用扭曲共轭骨架(~90° 二面角)和轴向甲基取代,通过空间位阻抑制分子聚集;氟原子可与 FA⁺阳离子形成氢键,稳定界面并减少碘空位缺陷,且优化分子偶极矩与能级匹配。

工艺:将 DCA 系列分子与 MeO-2PACz 按 3:1 摩尔比混合,配制 1 mg/mL 乙醇溶液,旋涂于 NiOₓ修饰的 FTO 基底上,形成均匀共 SAMs 空穴传输层。

作用机制:提升 SAM 层分散性(粒径 < 10 nm)和表面覆盖度(分子堆积密度提升 42%),优化 NiOₓ/ 钙钛矿界面电子态(Ni³⁺/Ni²⁺比例提高),促进载流子提取传输,抑制非辐射复合,同时诱导钙钛矿(100)晶面择优取向,减少界面缺陷。

器件性能

结构:FTO/NiOₓ/MeO-2PACz:DCA/Cs₀.₀₅FA₀.₈₅MA₀.₁PbI₃/PCBM/BCP/Ag,钙钛矿活性层厚度约 500 nm。

效率:DCA-1F 共 SAMs 器件表现最优,冠军 PCE 26.11%,开路电压(Vₒc)1.179 V,短路电流密度(Jₛc)25.89 mA/cm²,填充因子(FF)85.49%;DCA-0F、DCA-2F 共 SAMs 器件 PCE 分别为 25.21%、25.05%,均高于纯 MeO-2PACz 对照组(24.29%)。

稳定性:30-50% 湿度环境下储存 1000 小时,DCA-1F 共 SAMs 器件保持 90% 初始 PCE;1 太阳光照下最大功率点(MPP)跟踪 1000 小时,仍维持~90% 效率,而纯 MeO-2PACz 器件 500 小时后效率衰减超 50%。


器件制备


1、基底清洗与预处理:将 FTO 玻璃基底依次用洗涤剂、去离子水、丙酮、异丙醇各超声清洗 30 分钟,经氮气吹干后,紫外臭氧处理 20 分钟。

2、NiOₓ层制备:将 NiOₓ粉末分散于去离子水中,配制 10 mg/mL 的 NiOₓ水溶液,超声 5 分钟后用 0.22 μm 聚醚砜(PES)滤膜过滤;取 60 μL 该溶液旋涂于 FTO 基底(3000 rpm,30 s),随后在 150℃下退火 10 分钟,冷却至室温后转移至氮气手套箱。

3、SAM 层沉积:配制总浓度 1 mg/mL 的乙醇溶液,其中 MeO-2PACz 与 DCA 系列分子(DCA-0F、DCA-1F、DCA-2F)的摩尔比为 3:1(最优比例);将该溶液在氮气手套箱中旋涂于 NiOₓ层表面(1000 rpm,10 s;3000 rpm,40 s),形成共 SAMs 空穴传输层。

4、钙钛矿活性层制备:配制 1.5 M 的 Cs₀.₀₅FA₀.₈₅MA₀.₁PbI₃钙钛矿前驱体溶液,将 19.5 mg CsI、23.8 mg MAI、219.3 mg FAI 与 760.70 mg PbI₂溶解于 DMF 与 DMSO(体积比 4:1)的混合溶剂中,搅拌 4 小时;取适量前驱体溶液旋涂于 SAM 层表面(5000 rpm,50 s),旋涂过程中滴加 180 μL 氯苯(CB)作为反溶剂;旋涂结束后,立即在 100℃下退火 20 分钟,冷却至室温。

5、表面修饰:将 1 mg/mL 的 3MTPAI 异丙醇溶液(50 μL)旋涂于钙钛矿层表面(5000 rpm),随后在 100℃下退火 5 分钟。

6、电子传输层(ETL)制备:将 20 mg PC₆₁BM 溶解于 1 mL 氯苯中,旋涂于钙钛矿层表面(4000 rpm,30 s),70℃下退火 5 分钟。

7、电极沉积:在真空环境(<2×10⁻⁴ Pa)中,热蒸发沉积 BCP 层与 120 nm 厚的银(Ag)电极,完成器件封装。


图文速览

图片

图 1 (a) DCA-0F、DCA-1F 和 DCA-2F 三种自组装单分子层(SAMs)的合成路线。(b) 1 mg/mL 的 MeO-2PACz、DCA-0F、DCA-1F 和 DCA-2F 乙醇溶液的丁达尔光散射效应。(c) 动态光散射(DLS)测定的 1 mg/mL MeO-2PACz、DCA-0F、DCA-1F 和 DCA-2F 乙醇溶液的粒径分布。(d) DCA 分子与 MeO-2PACz 在溶液状态下自聚集行为的示意图。

图片

图 2 (a) MeO-2PACz、DCA-0F、DCA-1F 和 DCA-2F 的化学结构及分子静电势(ESP)分布。(b) MeO-2PACz 和 (c) DCA-0F 的 20 次循环伏安法(CV)曲线。(d) MeO-2PACz、DCA-0F、DCA-1F 和 DCA-2F 薄膜的吸收光谱。(e) MeO-2PACz、DCA-0F、DCA-1F 和 DCA-2F 的能级结构。(f) DCA-1F、DCA-1F/FAI 以及 DCA-2F、DCA-2F/FAI 的液态 ¹⁹F 核磁共振(NMR)谱图(溶剂:氘代二甲基亚砜,DMSO-d₆)。

图片

图 3 (a) p-i-n 型钙钛矿太阳能电池(PSCs)的结构示意图和 (b) 对应的截面扫描电子显微镜(SEM)图像,比例尺为 500 nm。(c) 基于 MeO-2PACz、co-SAM-0F、co-SAM-1F 和 co-SAM-2F 的器件在 AM 1.5G 模拟太阳光照下的电流密度 - 电压(J-V)特性曲线及光电转换效率(PCE)分布。(d) 基于 MeO-2PACz 和 co-SAM-1F 的器件的外量子效率(EQE)及积分电流密度谱图。(e) 最优 co-SAM-1F 器件与 MeO-2PACz 器件在最大功率点处的稳定功率输出(SPO)。(f) 近期报道的基于共自组装单分子层(co-SAM)策略的高效钙钛矿太阳能电池(PSCs)性能汇总。(g) 器件在黑暗空气环境(温度≈30℃,相对湿度 30-50%)下的储存稳定性跟踪。(h) 器件在氮气(N₂)氛围中、最大功率点(MPP)条件下连续白光 LED 照射(1 太阳强度)的工作稳定性跟踪。

图片

图 4 (a- c) 氟掺杂氧化锡(FTO)基底负载氧化镍(NiOₓ)、NiOₓ/MeO-2PACz 以及 NiOₓ/co-SAM 的开尔文探针力显微镜(KPFM)图像和原子力显微镜(AFM)高度图像。(d) NiOₓ、NiOₓ/MeO-2PACz 和 NiOₓ/co-SAM 薄膜的接触电势差(CPD)线扫描结果。(e) MeO-2PACz 与 co-SAM 在 NiOₓ基底上的表面覆盖度。(f) 未修饰、MeO-2PACz 修饰及 co-SAM 修饰的 NiOₓ薄膜的 Ni 2p₃/₂ X 射线光电子能谱(XPS)图。(g) MeO-2PACz 二聚体与 MeO-2PACz/DCA-1F(co-SAM)二聚体的空间位阻效应密度泛函理论(DFT)计算结果,以及 MeO-2PACz 溶液与 co-SAM 溶液的旋涂过程示意图。

图片

图 5 (a) 沉积在 NiOₓ、NiOₓ/MeO-2PACz 和 NiOₓ/co-SAM 基底上的钙钛矿薄膜的掠入射广角 X 射线散射(GIWAXS)图谱。(b) NiOₓ、NiOₓ/MeO-2PACz 和 NiOₓ/co-SAM 基底上钙钛矿薄膜的底部扫描电子显微镜(SEM)图像及 (c) X 射线衍射(XRD)图谱。(d) MeO-2PACz 和 co-SAM 基底上钙钛矿薄膜的铅(Pb)4f X 射线光电子能谱(XPS)图。(e) NiOₓ、NiOₓ/MeO-2PACz 和 NiOₓ/co-SAM 基钙钛矿太阳能电池(PSCs)的电化学阻抗谱(EIS)及 (f) 莫特 - 肖特基(Mott-Schottky)曲线。(g) MeO-2PACz 基与 co-SAM 基 p-i-n 型钙钛矿太阳能电池(PSCs)的钝化作用示意图。


作者:Zhangtao Min Chenxi Guo Junjun Guo Yuxin Kong Xuewei Hao Zhijie Tang Youyong Li Wanli Ma Jianyu Yuan

原文地址:https://doi.org/10.1002/adfm.202528728


索比光伏网 https://news.solarbe.com/202512/23/50015353.html
责任编辑:wanqin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
21.13% !脉络能源30×30 cm²柔性钙钛矿组件认证效率再创纪录来源:钙钛矿工厂 发布时间:2026-01-08 11:27:23

近日,广东脉络能源科技有限公司自主研发的30×30cm柔性钙钛矿光伏组件,经第三方权威机构TV北德认证,组件光电转换效率达21.13%,为同面积级别柔性钙钛矿光伏组件世界最高转换效率。进一步验证脉络能源的技术水平处于国际同类技术先进行列,彰显了公司在柔性钙钛矿组件工程化与产品化领域的持续推进能力。

又一钙钛矿合资公司将成立!晶科×晶泰签署AI高通量叠层太阳能电池项目合作协议!来源:钙钛矿工厂 发布时间:2026-01-08 11:25:48

近日,晶科能源宣布,与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳能电池合作研发。基于双方坚实的技术基础与合作规划,晶科能源预计钙钛矿叠层电池有望在未来三年左右迈向规模化量产。

晶科能源与晶泰科技签署AI高通量叠层太阳能电池项目合作协议来源:晶科能源 发布时间:2026-01-08 10:22:16

全球极具创新力的光伏企业晶科能源近日宣布,与人工智能+机器人赋能研发创新的平台型企业晶泰科技签署战略合作协议,双方将共同成立合资公司,推进基于AI技术的高通量钙钛矿叠层太阳能电池合作研发。此举标志着两家在不同技术领域的领军者强强联合,正式开启在钙钛矿叠层等下一代光伏技术领域的深度协同,旨在通过“AI+机器人”重塑光伏研发范式,加速颠覆性技术的研发与产业化进程。

从化学到太阳能电池:材料创新在钙钛矿光伏革命中的核心作用来源:钙钛矿材料和器件 发布时间:2026-01-07 10:33:54

钙钛矿太阳能电池已经成为光伏领域的一项变革性技术。自2009年问世以来,因其卓越的效率、低成本的加工工艺和可调谐的光电特性,十年内已成为下一代光伏技术的主要候选者。然而,长期稳定性、铅毒性和工业可扩展性方面的挑战仍然是其大规模商业化的主要障碍。本文探讨了材料创新在克服这些障碍中的核心作用,重点关注成分工程、分子添加剂与钝化、界面化学以及二维/准二维钙钛矿系统的进展。特别关注了电荷传输架构的演变和新兴的商业前景。我们还强调了从追求性能的研究转向注重耐用性和可制造性策略的重要性。文章最后对未来钙钛矿太阳能电池的发展方向提出了建议,包括标准化测试、预测性材料设计和环境友好型制造的需求。

计划总投资5000万元!钙钛矿太阳能电池材料项目落地烟台来源:东吴光伏圈 发布时间:2026-01-07 09:24:14

近日,烟台市生态环境局福山分局发布了对“太阳能电池材料及医药中间体研发中心项目”环境影响评价文件审批意见的公示。该项目由烟台华浩新材料科技有限公司投资建设,计划总投资5000万元。

柔性钙钛矿:光伏产业的下一个黄金赛道来源:ACMI光伏新材料 发布时间:2026-01-06 09:24:36

在便携式电子与可穿戴设备领域,柔性钙钛矿电池正成为新一代移动电源的核心技术。未来展望全球柔性钙钛矿市场正呈现爆发式增长趋势。包含柔性钙钛矿在内的"下一代太阳能电池"整体市场,规模将从2024年的42.1亿美元,以21.21%的年复合增长率增长至2032年的196.2亿美元。随着技术的不断突破,柔性钙钛矿正逐步从实验室走向产业化应用。柔性钙钛矿正以其独特的魅力,为人类打开一个更加灵活、高效、可持续的能源未来。

Lockin×光因科技钙钛矿太阳能电池智能锁发布!来源:钙钛矿工厂 发布时间:2026-01-06 09:15:36

2026年1月4日,全球销量第一的智能锁品牌Lockin发布全新的Aeon智能锁。Aeon智能锁将钙钛矿太阳能技术应用于智能门锁领域,利用高效太阳能采集大幅减少电池维护。永恒使用先进的钙钛矿太阳能电池,Lockin称其能转换效率远优于传统小型太阳能电池板,使锁定能从同一电池板面积吸收更多电力。在Lockin的产品组合中,Aeon属于静脉识别智能锁家族,旨在应用于现代智能家居系统,配合其更具实验性的光充旗舰产品,采用高效、以太阳能为中心的方案。

又一钙钛矿整线设备交付!来源:钙钛矿工厂 发布时间:2026-01-06 09:13:19

近日,氢导智能为某中国头部科技企业量身定制的钙钛矿太阳能电池整线设备项目顺利通过高标准验收。本次交付的钙钛矿整线设备覆盖以涂膜为主,涵盖基片清洗、激光划线、涂布、真空镀膜等核心工序,全面打通钙钛矿电池制备的关键环节,是真正意义上的量产级交钥匙工程。截止目前,氢导智能已成功助力多家客户推进钙钛矿量产进程,其中部分客户实现平米级电池效率突破20%,产业化能力持续得到验证。

21.09%@21.07cm²&17.38%@0.5m²柔性钙钛矿模组认证效率!暨南大学麦耀华团队最新Nature Energy来源:柔性钙钛矿光伏前沿 发布时间:2026-01-06 09:10:07

制备的柔性太阳能电池效率达到 24.52%,且耐久性显著提升:经 10000 次弯曲循环后效率保持率为 92.5%,在空气中放置 300 天后效率保持率为 95%,在 650 小时最大功率点跟踪后效率保持率为 80%。作者展示了经认证效率分别为 21.09%(孔径面积:21.07 cm²)和 17.38%(孔径面积:0.5 m²,功率:86.9 W)的组件。

总投资5000万元!烟台华浩新材钙钛矿太阳能电池材料项目环评获批来源:钙钛矿工厂 发布时间:2026-01-06 09:06:58

2026年1月4日,烟台市生态环境局福山分局发布了对“太阳能电池材料及医药中间体研发中心项目”环境影响评价文件审批意见的公示。该项目由烟台华浩新材料科技有限公司投资建设,选址于福山区进和路60号,总投资5000万元,计划建设周期为3个月。根据规划,项目将租赁烟台弘达旅游服务有限公司厂房的三、四层,总建筑面积1500平方米,用于建设研发中心。建成后,将开展钙钛矿太阳能电池材料的研发工作,涉及4个种类共计600余个。

新加坡团队攻克钙钛矿-硅叠层太阳能电池量产化关键技术来源:钙钛矿材料和器件 发布时间:2026-01-04 14:06:35

新加坡国立大学的科学家们近期宣布,他们成功在工业级绒面硅片上,通过气相沉积工艺制造出了兼具高效率与长期热稳定性的钙钛矿-硅叠层太阳能电池。值得注意的是,今年6月,新加坡太阳能研究所的研究人员曾报告了钙钛矿-有机叠层太阳能电池取得了26.4%的认证效率世界纪录,并在更大测试器件上达到26.7%,创下了该技术至今的最高性能。