掩埋界面工程:释放基于SAM的倒置钙钛矿太阳能电池潜力的关键西北工业大学王凯等Small综述

来源:钙钛矿学习与交流发布时间:2025-06-30 09:11:06

p-i-n 钙钛矿太阳能电池(PSCs)因其卓越的稳定性和极小的滞后效应,被视为缓解全球能源危机的一种极具潜力的解决方案。近年来,基于自组装单层(SAM)的 p-i-n PSCs 已展现出约 27% 的功率转换效率(PCEs)。与现有围绕 SAM 分子结构调制的综述不同,本工作重点关注基于 SAM 的倒置 PSC 在掩埋界面工程方面的最新进展。首先,通过对文献的全面分析,定义了八种不同的掩埋界面工程策略,并阐明了其潜在机制。其次,系统梳理了 SAM 基倒置 PSC 在稳定性研究方面的最新进展。最后,提出了优化器件效率、稳定性及可扩展商业化的策略建议。

文章概要

一、引言

p-i-n 钙钛矿电池优势稳定性高、滞后效应小,与商业晶硅电池可集成,钙钛矿 - 硅叠层电池 PCE 达 34.60%,突破肖克利 - 奎瑟极限(33.70%)。

界面工程重要性掩埋界面影响钙钛矿结晶、载流子提取,但其表征因薄膜剥离复杂而受限。

SAM 作为 HTL由锚定基团、间隔基团、头基团组成,可调功函、低电阻,代表 SAM 如 MeO-2PACz、Me-4PACz,基于 SAM 的 PSC PCE 接近 27%,但存在分子聚集、能级失配、润湿性差等问题。

二、掩埋界面工程策略

三、稳定性增强进展

SAM 分子结构调制

共轭扩展如 4PABCz 通过强 π-π 堆叠形成致密 HTL,1000h 后保留 93.98% PCE。

功能基团引入E-cbzBT 含扭曲分子结构,优化能级对齐,T₉₂超过 1000h。

掩埋界面工程

共吸附策略:MB 引入 NiOₓ/Me-4PACz 界面,1500h 紫外照射后保留 91% 效率。

化学桥接:PHMG 作为界面粘合剂,1630h 连续光照后保留 97.5% 效率。

四、总结与展望

共 SAMs 策略优势第二组分需含亲水基团(如 - NH₂)、具空间位阻,如 6PA、MPA 等,可低成本提升器件性能。

未来方向

先进表征:RAIRS、TOF-SIMS 等解析掩埋界面机制。

计算筛选:结合第一性原理与机器学习设计高效界面材料。

策略协同:ALD 技术与分子挤出工艺结合,提升大面积器件重复性。

n 型 SAM 研究:开发萘胺、富勒烯基 SAM,拓展至 n-i-p 电池。

图文信息

图 1. 自组装单层(SAM)分子结构及基于 SAM 的钙钛矿太阳能电池(PSCs)掩埋界面关键问题示意图

图 2. a) PbI₂分布调制示意图。b) 热退火过程中 IPA-CbzNaph 和 Co-CbzNaph 的原位光致发光(PL)强度演变。c) 热退火时间内的 PL 峰值强度演变。d) 两亲性 SAM 分子形成胶束及在共溶剂中分解的示意图。e) 对照组和 DMSO 处理的 2PACz-SAM 的原子力显微镜(AFM)形貌图像。f) 处理前不均匀的 2PACz-SAM 分子排列及处理后重新取向的示意图。

图 3. a) 器件结构示意图:对照组薄膜、含 Al₂O₃纳米颗粒的空穴传输层(ST-Al₂O₃),以及结合 Al₂O₃纳米颗粒和 PEABr 的空穴传输层(ST-Al₂O₃&D-PEABr)。b) 对照组、ST-Al₂O₃、D-PEABr 和 ST-Al₂O₃&D-PEABr 薄膜在 98±1% 湿度下老化 5 天的光学图像。c) 钙钛矿溶液在 ITO/Me-4PACz、ITO/Me-4PACz/PFN-Br 和 ITO/Me-4PACz/Al₂O₃上的滚落角测量结果。d) Me-4PACz 和调制后的 NiOₓ/Me-4PACz 的表面电势 KPFM 图像。e) 照片显示裸露 Me-4PACz 对钙钛矿的润湿性差,以及 PFN-Br/Al₂O₃修饰后润湿性的改善。f) 含或不含 Al₂O₃纳米颗粒的掩埋界面示意图。

图 4. a) 涂覆在 ITO/2PACz 和 ITO / 共 SAM 上的 Sn-Pb 钙钛矿薄膜的晶格结构示意图。b) 含 2PACz、共 SAM 和甘氨酸的器件的填充因子(FF)损失分析。c) 涂覆在 ITO/2PACz(上)和 ITO / 共 SAM(下)上的钙钛矿薄膜的横截面扫描电子显微镜(SEM)图像。d) 沉积在 ITO 上的 MeO-2PACz 和混合 SAM 的薄膜结构示意图。e) SAM 分子的化学结构及其水接触角。f) 通过共沉积钙钛矿和优化混合比例的 SAMs 实现宽带隙(WBG)钙钛矿沉积过程的示意图。g) Mx-SAM 的分子结构(左:Me-4PACz,右:MeO-PhPACz)。

图 5. a) 后自组装单层(po-SAMs)沉积过程示意图。b) 自组装双层(SAB,SAM + 润湿层)结构示意图。c) 目标器件结构的横截面扫描电子显微镜(SEM)图像。d) SAM@准平面结构的作用机制示意图。e) 钙钛矿在 CNph 和 CNph@POZ-BT-PY 包覆的氧化铟锡(ITO)上的皮秒瞬态吸收(ps-TA)光谱二维伪彩色图。f) 钙钛矿在 CNph 和 CNph@POZ-BT-Py 上的表面形貌 SEM 图像。

图 6. a) MeO-2PACz、2-MeIM 和 2-MeBIM 的分子结构与球棍模型。b) 含添加剂与不含添加剂的相应薄膜的表面粗糙度。c) 对照组与混合 SAM 的示意图。d) 2PACz 基钙钛矿薄膜与共吸附(CA)基钙钛矿薄膜的掩埋界面高分辨率原子力显微镜(AFM)图像,晶界沟槽角度估计分别为 51° 和 118°。e) PAG 共吸附前后 2-PACz 的自组装示意图。f) PAG 共吸附前后 2-PACz 的示意图。

图 7. a) 目标钙钛矿太阳能电池(PSCs)的器件结构。b) 示意图展示了钙钛矿薄膜在 ITO/MeO-2PACz 和 ITO/MeO-2PACz/PFN-Br 基底上的表面电势能带图。c) 对照组和 NCL 处理的钙钛矿(PVK)薄膜的掠入射广角 X 射线散射(GIWAXS)图像。d) PACz 衍生的自组装单层(SAMs)的分子结构。

图 8. a) 导电粘合剂(PANI)的相互作用机制示意图。b) 展示 PHMG 内聚效应的示意图。c) 对照组、掩埋界面调制(BIM)和双界面调制(DIM)钙钛矿太阳能电池(PSCs)的奈奎斯特图。d) 整体设计方法的图示。F-BHI 封端的钙钛矿与 C60 和 Me-2PACz 均形成良好连接。红色光晕表示 π-π 相互作用;浅黄色虚线代表载流子传输路径。e) 9-YT 中官能团与 MeO-2PACz 之间 π-π 相互作用的示意图。

图 9. a) 钙钛矿薄膜剥离方法示意图。b) MTIm 渗透晶界并在双界面形成 1D 钙钛矿的示意图。c) CA-20、参比物和 1D 组分的固态 1D NMR 光谱(I¹H/²⁰⁷Pb)。在 ²⁰⁷Pb 光谱中,绿色竖条表示对应 3D 钙钛矿的 ²⁰⁷Pb 峰,蓝色条带突出显示 1D 组分。d) 使用配体 4 - 乙烯基苄基铵(VBA)在掩埋界面进行 2D 钙钛矿混合两步法处理的示意图。请注意,UV 处理结合热加热可诱导交联 (VBA)₂PbI₄的形成。e) 通过在 2D 钙钛矿上沉积 3D 钙钛矿形成 2D/3D 双层异质结构的示意图。f) 含和不含 2D-R 钙钛矿器件的载流子传输机制示意图。

图 10. a) PEN/ITO/SP-NiO 和 PEN/ITO/SP-NP-NiO 10(NP-NiOₓ浓度 = 10 mg・mL⁻¹)的原子力显微镜(AFM)图像。b) 含或不含 NP-NiO 的空穴传输层(HTLs)制备工艺示意图。c) 修饰 NiOₓ上的 SAM(Me-4PACz)和共 SAMs(Me-4PACz + PC)的示意图。d) 用于分子动力学模拟的钙钛矿 / SAM/NiO/SAM/NiOₓ异质结模型图示。e) 含 NA-Me 混合表面层(HSL)的冠军倒置 PSC 在正向和反向扫描时的 J–V 曲线。

图 11. a) 4PACz、P-4PACz 和 4PABCz 多层结构及其提出的空穴传输机制示意图。b) E-CbzBT 的分子结构。c) PTZ-PA 和 2Br-PTZ-PA 的分子间距离计算(键长单位为埃)d) 具有不同取代基的 SAM 分子的化学结构。e) 4PADCB 和 4PBAI 的球棍模型。f) ITO / 共 SAMs 薄膜的制备示意图。

论文信息

论文标题:Buried Interface Engineering: a Key to Unlocking the Potential of Self‐Assembled Monolayer (SAM)‐based Inverted Perovskite Solar Cells

发表期刊:《Small》

发表时间:2025年6月20日

作者:Ruida Xu, Chengji Wang, Zhiyuan Zhang, Jing Li, YuLin Wei, Kai Wang, Mingjia Xiao


索比光伏网 https://news.solarbe.com/202506/30/390851.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
阿特斯:在太空光伏相关的HJT、钙钛矿叠层等领域取得了领先性的研发成果来源:索比光伏网 发布时间:2026-01-30 17:43:35

近日,阿特斯在接受投资者调研时表示,公司在与太空光伏相关的晶体硅电池、钙钛矿/HJT叠层电池与组件等方向已经进行了长期技术开发及储备,并且取得了领先性的研发成果。2020年阿特斯搭建了行业技术领先的HJT中试线,并在光伏业内率先开发并推出了半片电池技术,具备80微米乃至更薄HJT电池研发和中试能力。

突破55W/g!我国新型钙钛矿空间光伏技术刷新“功质比”世界最高纪录!来源:钙钛矿工厂 发布时间:2026-01-29 08:47:41

量级革命,刷新人类光伏功质比最高纪录钙钛矿太阳能电池凭借其卓越的光电特性,成为制备高功质比器件的理想载体。公司科研团队自2019年起深耕大功质比超轻量柔性钙钛矿技术领域,历经数年技术攻关,多次刷新行业纪录。

协鑫集成申请钙钛矿电池界面修饰层结构专利,抑制非辐射复合提升电池效率来源:金融界 发布时间:2026-01-23 08:32:49

国家知识产权局信息显示,协鑫集成科技股份有限公司;芜湖协鑫集成新能源科技有限公司申请一项名为“钙钛矿电池及其制备方法、叠层电池和光伏组件”的专利,公开号CN121368259A,申请日期为2025年10月。通过天眼查大数据分析,协鑫集成科技股份有限公司共对外投资了32家企业,参与招投标项目504次,财产线索方面有商标信息21条,专利信息304条,此外企业还拥有行政许可45个。

32.38%效率认证!迈为股份实现G12H钙钛矿/晶硅异质结叠层电池关键突破来源:迈为股份 发布时间:2026-01-21 17:08:36

近日,经中国计量科学研究院权威认证,迈为股份采用自主研发的可量产设备与工艺,成功研制的钙钛矿/晶硅异质结叠层电池,光电转换效率达到32.38%。公司与苏州大学、北京工业大学等高校团队合作,成功开发出认证效率高达33.6%的柔性钙钛矿/晶硅异质结叠层太阳能电池。

大哲光能钙钛矿项目获批来源:钙钛矿光链 发布时间:2026-01-20 11:01:49

据浙江政务服务网公示信息,1月15日,嘉兴大哲光能有限公司钙钛矿太阳能电池研发项目完成备案。

极电姜伟龙:从“长江生态”看钙钛矿技术的价值跃迁来源:极电光能 发布时间:2026-01-19 14:13:46

演讲中,姜伟龙博士从极电光能的实践案例出发,生动展示了钙钛矿技术的广阔应用图景。聚焦场景核心需求解析钙钛矿技术价值潜能从应用场景出发,姜伟龙博士进一步剖析了钙钛矿的技术价值。姜伟龙博士认为,钙钛矿技术的寿命潜力,有赖于全产业链的耐心攻坚与紧密协作。这一理念正与“长江生态”一脉相承。

牛津光伏:计划到2028年实现钙钛矿叠层组件效率达27%、寿命达20年的目标来源:钙钛矿工厂 发布时间:2026-01-19 09:23:53

近日,钙钛矿太阳能光伏领先公司牛津光伏(Oxford PV)表示,随着可靠性和光电转换效率的持续提升,计划于2028年将其钙钛矿/晶硅叠层太阳能组件产品实现批量化生产。

协鑫集成王皓正:三端钙钛矿叠层电池破局效率天花板,产业化落地进入攻坚期来源:索比光伏网 发布时间:2026-01-14 14:57:04

1月14日,碳索2025·第四届光能杯创新分享会在苏州举行,协鑫集成研发总监王皓正博士发表主题演讲,深入解析“钙钛矿叠层电池产业化的必然趋势”,系统阐述三端叠层架构的技术优势、工程化难点及突破路径,为行业突破效率天花板、实现高质量产业化提供关键思路。

上海交大陈汉EES:29.58%!又是SAM与钙钛矿间的分子桥接剂!高效光稳定全钙钛矿叠层电池!来源:钙钛矿人 发布时间:2026-01-14 08:51:49

上海交通大学陈汉等人引入一种分子桥接剂,它既能与SAM基底共轭,又能与钙钛矿表面配位,从而增强空穴收集异质界面处的化学与电子耦合。通过这一策略,获得了光稳定、带隙1.76 eV、光电性能提升且晶格稳定的钙钛矿吸收层,使单结钙钛矿太阳能电池实现20.79%的光电转换效率(认证值20.35%)。当该电池与1.25 eV的Sn-Pb钙钛矿底电池集成时,所得两端单片全钙钛矿叠层太阳能电池效率达29.58%,且封装器件在960小时连续最大功率点运行后仍保持初始效率的90%。

华东师范大学方俊锋最新Nature Communications:一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池来源:钙钛矿太阳能电池 发布时间:2026-01-14 08:37:34

2026年1月12日华东师范大学Wenxiao Zhang&方俊锋&林雪平大学高峰于Nature Communication刊发一种不含氟化锡、高效且耐用的锡铅钙钛矿太阳能电池的研究成果,开发了一种策略,将铅粉作为前驱体,并进行PbF₂后处理,分别替代SnF₂在成膜和表面缺陷钝化中的作用。Pb²⁺中的d电子极化增强了其与F⁻的结合,使其对钙钛矿的反应惰性。在本研究中,不含SnF₂的器件效率从16.43%提高到24.07%。在最大功率点下,85°C 运行 550 小时后,电池仍能保持其初始效率的60%。

晶澳DeepBlue 5.0全面进化:电站更高收益、更低成本的关键答案?来源:索比光伏网 发布时间:2026-01-12 17:02:17

来源/晶澳太阳能

新闻排行榜
本周
本月