47.8W/g破纪录!香港理工严锋团队开发三重策略实现超薄柔性钙钛矿太阳能电池

来源:柔性钙钛矿光伏进展发布时间:2025-06-06 10:07:58

超薄柔性钙钛矿太阳能电池(f-PSC) 作为便携式电源非常受欢迎,而包括钙钛矿和器件透明电极在内的关键部件的刚度导致了制造方面的挑战。2025年6月2日,香港理工大学严锋等于Advanced Science刊发整体性优化实现高效率与机械稳健性超薄柔性钙钛矿太阳能电池的最新研究成果。该研究开发了几种策略来提高超薄f-PSC 的机械柔韧性和光伏性能。首先,在钙钛矿薄膜的边界处引入具有低杨氏模量的二维钙钛矿作为润滑剂以释放应力,这通过原位TEM 表征得到证实。其次,将掺杂三氯蔗糖的导电PEDOT:PSS用作透明电极,以增强器件的机械柔韧性和光伏性能。第三,采用超薄PET衬底将中性面转移到钙钛矿薄膜中,进一步提高了器件的机械柔韧性。因此,成功制造了一种功率转换效率为21.44%的超薄f-PSC,创纪录的47.8 W g-1单位重量功率值。通过将超薄 f-PSC 层压在预应变的基底上来实现可拉伸器件,当拉伸高达40%时表现出稳定的性能。f-PSC在室内光照强度下显示出36.25%的高效率,表明在室内光伏应用方面具有巨大潜力。

钙钛矿太阳能电池(PSCs)凭借其制造简单、成本低以及迄今26%的高功率转换效率(PCE)而成为下一代光伏技术。此外,钙钛矿薄膜的低温处理工艺和较薄的厚度使得制造柔性轻质器件成为可能,这些器件能够在非平面和移动结构上收集太阳能,并可作为建筑一体化光伏、近太空飞行器、可穿戴电子设备和物联网(IOT)的便携式电源。柔性钙钛矿太阳能电池(f-PSCs)通常在厚度为数百微米的聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN)基底上制备,同时,易碎的氧化铟锡(ITO)透明电极通常用于这些器件以实现高效率。尽管效率相对较高,但器件的机械柔韧性和重量通常受到ITO和钙钛矿薄膜的脆性以及较厚塑料基底的限制,这可能无法满足特定应用的需求,例如对轻质超薄器件有高度需求的自供电生物电子设备、航空电子设备和可穿戴电子设备。值得注意的是,通过减小基底厚度以构建超薄器件,可以显著提高f-PSC的机械柔韧性。

目前,尽管在制造技术方面投入了大量努力,但由于其制造工艺不成熟且复杂,超薄f-PSCs的效率远低于普通PSCs。Kaltenbrunner 等人报道了一种在 1.4 μm 厚的 PET 基材上用PEDOT:PSS透明电极制造的超薄 f-PSC,其单位重量功率为 23W g-1,PCE为12%[Nat. Mater. 2015, 14, 1032]。Kang 等人使用正交银纳米线 (AgNWs) 作为底部透明电极的材料,制造了一种 PCE 为 15.18%、单位重量功率为 29.4 W g-1 的超薄 f-PSC。增强的光伏性能可归因于 AgNW 的导电性高于 PEDOT:PSS[J. Mater. Chem. A 2019, 7, 1107]。在机械稳定性方面,Lee 等人采用了减小基板厚度的协同作用,获得了 PCE 为 17.03% 且在 100 次揉皱循环后具有高稳定性的柔性器件[Energy Environ. Sci. 2019, 12, 3182]。 最近,Wu 等人使用 Zr、Ti 和 Ga 掺杂氧化铟 (ITGZO) 作为底部透明电极,在 3 μm 厚的聚对二甲苯-C衬底上制备了超薄的 f-PSC,PCE 为 20.2%,单位重量功率为 30.3 W g-1[Sci. China Mater. 2022, 65, 2319]。 最近,Hailegnaw 等人使用准2D钙钛矿作为活性层来制造超薄 PSC,其最佳PCE 为 20.1%,比功率高达 44 W g-1[Nat. Energy 2024, 9, 677.]。

在此,作者报道了一种高柔性且高效的超薄钙钛矿太阳能电池,该电池通过同时对钙钛矿薄膜、透明电极和基底进行整体优化而实现。首先,在钙钛矿薄膜的晶界处引入二维钙钛矿(PEA₂PbI₄)作为润滑剂以释放内部应力。原位透射电子显微镜(TEM)表征证实,施加在薄膜上的应力可通过PEA₂PbI₄二维层的滑动或旋转来释放。其次,通过用三氯蔗糖掺杂PEDOT:PSS透明电极,显著提高了其电导率。此外,掺杂后的PEDOT:PSS薄膜在保持与ITO相当电导率的同时,表现出比原始薄膜更好的机械柔韧性。而且,由于三氯蔗糖掺杂的PEDOT:PSS具有超光滑的形貌,在PEDOT:PSS和钙钛矿层之间形成了更强的附着力。这不仅抑制了非辐射复合,还提高了f-PSCs的机械稳定性。第三,采用厚度为1.4微米的超薄PET基底,将中性面转移到钙钛矿薄膜中,进一步增强了机械耐久性。基于上述策略,成功制备了轻质超薄钙钛矿太阳能电池,冠军PCE达到21.44%,最大功率重量比为47.8 W/g,这是目前超薄f-PSCs的最高值。该电池展现出了出色的机械柔韧性和稳定性,在0.5毫米的弯曲半径下经过1000次弯曲循环后仍能保持初始效率。通过将超薄器件层压在预拉伸的柔性基底上,实现了拉伸比高达40%的可拉伸PSC。此外,该f-PSC在室内光照强度下达到了36.25%的高效率,显示出优异的室内光伏性能。这种高性能、轻质、可拉伸且超薄的f-PSCs有望在未来找到合适的应用领域。

图1. PEA2PbI4添加剂对f-PSCs性能和钙钛矿性质的影响

图2. 应变下钙钛矿薄膜的微观结构图像

图3. 掺杂三氯蔗糖的高导电性和柔性PEDOT:PSS的表征

图4. 超薄f-PSC的表征

为了进一步提高 f-PSC 的机械柔韧性,作者使用了 1.4 μm 超薄厚度的 PET基底将净应变和应力为零的中性平面定位在钙钛矿薄膜附近或内部,并减小了器件的总厚度。 使用厚度为 1.4 μm 的 PET 衬底可以将中性面定位在钙钛矿层,这可以显着提高 f-PSC 的机械柔韧性。图4a显示了超薄 f-PSC 包裹针头的照片,这表明该器件具有超柔韧性。图4b显示了最佳器件的J-V曲线,其中PCE为 21.44%。器件质量密度约为 4.48 g/m2 。该器件的最高单位重量功率估计为 47.8 W g-1,这是迄今为止超薄f-PSC的创纪录值(图 4c)。弯曲稳定性也是在 0.5 mm 的弯曲半径下测量的。超薄f-PSC可以在 1000 次弯曲循环后保持初始 PCE,如图4d 所示。通过将柔性超薄f-PSC层压在预应变的 PDMS 基材上,可以实现可拉伸 PSC。由于范德华相互作用,该装置的 PET 底面可以很容易地附着在 PDMS 表面上。图4e显示了应变释放前后 f-PSC 连接到预应变(40%拉伸应变)PDMS 基材的照片。可拉伸 f-PSC 在拉伸测试期间表现出稳定的性能,不会对设备表面造成明显损坏。在光学显微镜下,应变释放后在 f-PSC 表面观察到一些皱纹,当装置向后拉伸40%至其长度时,这些皱纹完全消失,如图 4f所示。考虑到 PSC 在室内应用方面的巨大潜力,对超薄f-PSC的室内光伏性能进行了表征,如图4h所示。在 1000 lux、500 lux 和 200 lux 白光下可以分别实现 36.25%、33.42% 和 32.42% 的 PCE。值得注意的是,这是用于室内光能收集的超薄f-PSC的首次演示。考虑到其超高的单位重量功率值,该设备有望找到许多应用,例如可穿戴电子产品和物联网。

柔性钙钛矿太阳能电池(f-PSCs)制备工艺

1. 基底处理

基底选择:采用商用聚萘二甲酸乙二醇酯/氧化铟锡(PEN/ITO)基底,直接贴附于玻璃基板上进行器件制备。

预处理:将聚三芳基胺(PTAA,Sigma-Aldrich)以2.0 mg/mL浓度溶解于甲苯中,以5000 rpm的转速旋涂40秒,随后在100 °C热板上退火10分钟。

2. 空穴传输层(HTL)优化

界面修饰:旋涂聚[双(4-苯基)(联苯-4-基)胺](PFN)于PTAA薄膜表面,增强其亲水性以促进钙钛矿薄膜的均匀沉积。

3. 钙钛矿活性层制备

前驱体溶液配制:CH3NH3PbI3前驱体:混合CH3NH3I(159 mg)、PbI2(461 mg)、N,N-二甲基甲酰胺(DMF,600 mg)及二甲亚砜(DMSO,78 mg)。

旋涂工艺:以4000 rpm转速旋涂30秒,旋涂过程中于10秒内缓慢滴加0.5 mL无水二乙醚(99.7%纯度)。

退火处理:薄膜在100°C下退火20分钟。

混合钙钛矿制备:FAPbI3/MAPbBr3混合体系:按95:5比例混合1.2 M甲脒铅碘(FAPbI3)与甲基铵铅溴(MAPbBr3)溶液(DMF:DMSO=4:1体积比)。

Cs掺杂:将40 μL 1.5 M CsI(DMSO溶液)与960 μL混合钙钛矿溶液混合。

2D/3D钙钛矿混合:按等摩尔比配制苯乙胺铅碘(PEA2PbI4)前驱体,与MAPbI3或混合钙钛矿前驱体混合,形成二维/三维钙钛矿异质结。

4. 电子传输层(ETL)制备

PCBM层:以20 mg/mL浓度的[6,6]-苯基-C61-丁酸甲酯(PCBM,Nano-C)氯苯溶液,3000 rpm旋涂40秒,90°C退火20分钟。

电子界面修饰:旋涂浴铜灵(BCP,Sigma-Aldrich,96%纯度)甲醇溶液(0.5 mg/mL),4500 rpm转速下旋涂30秒。

5. 电极制备与封装

顶电极:通过热蒸发沉积银(Ag)电极,完成器件组装。

6. 柔性基底工艺:

基底选择:采用超薄聚对苯二甲酸乙二醇酯(PET)基底,通过范德华力(van der Waals interaction)贴附于聚二甲基硅氧烷(PDMS)/玻璃复合基板。

剥离工艺:器件制备完成后,因PDMS与PET间作用力较弱,可直接剥离获得柔性器件。


索比光伏网 https://news.solarbe.com/202506/06/390028.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
西交大梁超AM:29.14%! 全钙钛矿叠层电池! 四硫富瓦烯原位双界面调控实现高效Sn-Pb及全钙钛矿电池!来源:钙钛矿人 发布时间:2025-12-26 10:48:30

西安交通大学梁超等人提出一种原位双界面调控策略:在前驱体溶液中引入平面刚性电子给体四硫富瓦烯(TTF)。TTF与锡-铅钙钛矿前驱体组分间的电子给-受相互作用,辅以TTF原位自组装在钙钛矿体相及上下界面的双重富集,协同调控结晶动力学、均化Sn氧化态、促进载流子在体相与双界面处的抽取与输运,并稳固钙钛矿晶格。

AFM:硫族钙钛矿 LaScS₃-石墨烯复合薄膜实现 p 型透明导电材料来源:知光谷 发布时间:2025-12-24 09:22:19

然而,缺陷阻碍了LSS薄膜实现有效的导电性。本工作不仅为基于溶液法制备硫族钙钛矿薄膜提供了可扩展的路径,也为开发用于透明电子器件的p型透明导电材料提出了新策略。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

AFM:双功能电子传输层工程实现能级对齐与界面钝化,打造高效钙钛矿发光二极管来源:知光谷 发布时间:2025-12-23 10:00:54

我们深入研究了BPAH对ETL能级和迁移率的影响,并揭示了其与发光层之间的强相互作用,有效钝化了发光层表面缺陷,促进了电荷传输与辐射复合。研究亮点:一分子双功能:BPAH实现ETL能级调控与界面钝化BPAH分子插入POT2T分子间隙,改善π-π堆叠,提升电子迁移率;其咪唑基团与发光层中未配位Pb配位,增强铅-卤键结合力,有效抑制卤离子迁移与界面缺陷。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

溴功能化Bz-PhpPABrCz+Bz-PhpPACz二元混合SAM在纹理化钙钛矿/硅叠层太阳电池上实现31.4%效率来源:钙钛矿-晶硅叠层太阳电池TSCs 发布时间:2025-12-22 17:25:37

Huang等人关键发现:溴杂质意外提升性能意外发现:商用SAM材料4PADCB中意外含有溴代杂质,这些杂质反而提升了叠层电池性能。低滞后性:Mix和C-4PADCB电池滞后明显小于纯Bz-PhpPACz(图5B)。

港科大周圆圆、港理工蔡嵩骅等人NC:揭秘钙钛矿电池性能的“隐形杀手”——晶内杂质纳米团簇来源:先进光伏 发布时间:2025-12-22 16:29:28

香港科技大学周圆圆、香港理工大学蔡嵩骅等研究团队,通过低剂量扫描透射电子显微镜首次在铯掺杂混合阳离子钙钛矿薄膜中,发现了一种新型亚稳态晶粒内杂质纳米簇。核心技术亮点首次发现晶粒内隐藏杂质:利用超低剂量扫描透射电镜,首次在原子尺度上直接观测并解析了隐藏在钙钛矿晶粒内部的亚稳态ABX型杂质纳米团簇的晶体结构。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。