超薄柔性钙钛矿太阳能电池(f-PSC) 作为便携式电源非常受欢迎,而包括钙钛矿和器件透明电极在内的关键部件的刚度导致了制造方面的挑战。2025年6月2日,香港理工大学严锋等于Advanced Science刊发整体性优化实现高效率与机械稳健性超薄柔性钙钛矿太阳能电池的最新研究成果。该研究开发了几种策略来提高超薄f-PSC 的机械柔韧性和光伏性能。首先,在钙钛矿薄膜的边界处引入具有低杨氏模量的二维钙钛矿作为润滑剂以释放应力,这通过原位TEM 表征得到证实。其次,将掺杂三氯蔗糖的导电PEDOT:PSS用作透明电极,以增强器件的机械柔韧性和光伏性能。第三,采用超薄PET衬底将中性面转移到钙钛矿薄膜中,进一步提高了器件的机械柔韧性。因此,成功制造了一种功率转换效率为21.44%的超薄f-PSC,创纪录的47.8 W g-1单位重量功率值。通过将超薄 f-PSC 层压在预应变的基底上来实现可拉伸器件,当拉伸高达40%时表现出稳定的性能。f-PSC在室内光照强度下显示出36.25%的高效率,表明在室内光伏应用方面具有巨大潜力。
钙钛矿太阳能电池(PSCs)凭借其制造简单、成本低以及迄今26%的高功率转换效率(PCE)而成为下一代光伏技术。此外,钙钛矿薄膜的低温处理工艺和较薄的厚度使得制造柔性轻质器件成为可能,这些器件能够在非平面和移动结构上收集太阳能,并可作为建筑一体化光伏、近太空飞行器、可穿戴电子设备和物联网(IOT)的便携式电源。柔性钙钛矿太阳能电池(f-PSCs)通常在厚度为数百微米的聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN)基底上制备,同时,易碎的氧化铟锡(ITO)透明电极通常用于这些器件以实现高效率。尽管效率相对较高,但器件的机械柔韧性和重量通常受到ITO和钙钛矿薄膜的脆性以及较厚塑料基底的限制,这可能无法满足特定应用的需求,例如对轻质超薄器件有高度需求的自供电生物电子设备、航空电子设备和可穿戴电子设备。值得注意的是,通过减小基底厚度以构建超薄器件,可以显著提高f-PSC的机械柔韧性。
目前,尽管在制造技术方面投入了大量努力,但由于其制造工艺不成熟且复杂,超薄f-PSCs的效率远低于普通PSCs。Kaltenbrunner 等人报道了一种在 1.4 μm 厚的 PET 基材上用PEDOT:PSS透明电极制造的超薄 f-PSC,其单位重量功率为 23W g-1,PCE为12%[Nat. Mater. 2015, 14, 1032]。Kang 等人使用正交银纳米线 (AgNWs) 作为底部透明电极的材料,制造了一种 PCE 为 15.18%、单位重量功率为 29.4 W g-1 的超薄 f-PSC。增强的光伏性能可归因于 AgNW 的导电性高于 PEDOT:PSS[J. Mater. Chem. A 2019, 7, 1107]。在机械稳定性方面,Lee 等人采用了减小基板厚度的协同作用,获得了 PCE 为 17.03% 且在 100 次揉皱循环后具有高稳定性的柔性器件[Energy Environ. Sci. 2019, 12, 3182]。 最近,Wu 等人使用 Zr、Ti 和 Ga 掺杂氧化铟 (ITGZO) 作为底部透明电极,在 3 μm 厚的聚对二甲苯-C衬底上制备了超薄的 f-PSC,PCE 为 20.2%,单位重量功率为 30.3 W g-1[Sci. China Mater. 2022, 65, 2319]。 最近,Hailegnaw 等人使用准2D钙钛矿作为活性层来制造超薄 PSC,其最佳PCE 为 20.1%,比功率高达 44 W g-1[Nat. Energy 2024, 9, 677.]。
在此,作者报道了一种高柔性且高效的超薄钙钛矿太阳能电池,该电池通过同时对钙钛矿薄膜、透明电极和基底进行整体优化而实现。首先,在钙钛矿薄膜的晶界处引入二维钙钛矿(PEA₂PbI₄)作为润滑剂以释放内部应力。原位透射电子显微镜(TEM)表征证实,施加在薄膜上的应力可通过PEA₂PbI₄二维层的滑动或旋转来释放。其次,通过用三氯蔗糖掺杂PEDOT:PSS透明电极,显著提高了其电导率。此外,掺杂后的PEDOT:PSS薄膜在保持与ITO相当电导率的同时,表现出比原始薄膜更好的机械柔韧性。而且,由于三氯蔗糖掺杂的PEDOT:PSS具有超光滑的形貌,在PEDOT:PSS和钙钛矿层之间形成了更强的附着力。这不仅抑制了非辐射复合,还提高了f-PSCs的机械稳定性。第三,采用厚度为1.4微米的超薄PET基底,将中性面转移到钙钛矿薄膜中,进一步增强了机械耐久性。基于上述策略,成功制备了轻质超薄钙钛矿太阳能电池,冠军PCE达到21.44%,最大功率重量比为47.8 W/g,这是目前超薄f-PSCs的最高值。该电池展现出了出色的机械柔韧性和稳定性,在0.5毫米的弯曲半径下经过1000次弯曲循环后仍能保持初始效率。通过将超薄器件层压在预拉伸的柔性基底上,实现了拉伸比高达40%的可拉伸PSC。此外,该f-PSC在室内光照强度下达到了36.25%的高效率,显示出优异的室内光伏性能。这种高性能、轻质、可拉伸且超薄的f-PSCs有望在未来找到合适的应用领域。
图1. PEA2PbI4添加剂对f-PSCs性能和钙钛矿性质的影响
图2. 应变下钙钛矿薄膜的微观结构图像
图3. 掺杂三氯蔗糖的高导电性和柔性PEDOT:PSS的表征
图4. 超薄f-PSC的表征
为了进一步提高 f-PSC 的机械柔韧性,作者使用了 1.4 μm 超薄厚度的 PET基底将净应变和应力为零的中性平面定位在钙钛矿薄膜附近或内部,并减小了器件的总厚度。 使用厚度为 1.4 μm 的 PET 衬底可以将中性面定位在钙钛矿层,这可以显着提高 f-PSC 的机械柔韧性。图4a显示了超薄 f-PSC 包裹针头的照片,这表明该器件具有超柔韧性。图4b显示了最佳器件的J-V曲线,其中PCE为 21.44%。器件质量密度约为 4.48 g/m2 。该器件的最高单位重量功率估计为 47.8 W g-1,这是迄今为止超薄f-PSC的创纪录值(图 4c)。弯曲稳定性也是在 0.5 mm 的弯曲半径下测量的。超薄f-PSC可以在 1000 次弯曲循环后保持初始 PCE,如图4d 所示。通过将柔性超薄f-PSC层压在预应变的 PDMS 基材上,可以实现可拉伸 PSC。由于范德华相互作用,该装置的 PET 底面可以很容易地附着在 PDMS 表面上。图4e显示了应变释放前后 f-PSC 连接到预应变(40%拉伸应变)PDMS 基材的照片。可拉伸 f-PSC 在拉伸测试期间表现出稳定的性能,不会对设备表面造成明显损坏。在光学显微镜下,应变释放后在 f-PSC 表面观察到一些皱纹,当装置向后拉伸40%至其长度时,这些皱纹完全消失,如图 4f所示。考虑到 PSC 在室内应用方面的巨大潜力,对超薄f-PSC的室内光伏性能进行了表征,如图4h所示。在 1000 lux、500 lux 和 200 lux 白光下可以分别实现 36.25%、33.42% 和 32.42% 的 PCE。值得注意的是,这是用于室内光能收集的超薄f-PSC的首次演示。考虑到其超高的单位重量功率值,该设备有望找到许多应用,例如可穿戴电子产品和物联网。
柔性钙钛矿太阳能电池(f-PSCs)制备工艺
1. 基底处理
基底选择:采用商用聚萘二甲酸乙二醇酯/氧化铟锡(PEN/ITO)基底,直接贴附于玻璃基板上进行器件制备。
预处理:将聚三芳基胺(PTAA,Sigma-Aldrich)以2.0 mg/mL浓度溶解于甲苯中,以5000 rpm的转速旋涂40秒,随后在100 °C热板上退火10分钟。
2. 空穴传输层(HTL)优化
界面修饰:旋涂聚[双(4-苯基)(联苯-4-基)胺](PFN)于PTAA薄膜表面,增强其亲水性以促进钙钛矿薄膜的均匀沉积。
3. 钙钛矿活性层制备
前驱体溶液配制:CH3NH3PbI3前驱体:混合CH3NH3I(159 mg)、PbI2(461 mg)、N,N-二甲基甲酰胺(DMF,600 mg)及二甲亚砜(DMSO,78 mg)。
旋涂工艺:以4000 rpm转速旋涂30秒,旋涂过程中于10秒内缓慢滴加0.5 mL无水二乙醚(99.7%纯度)。
退火处理:薄膜在100°C下退火20分钟。
混合钙钛矿制备:FAPbI3/MAPbBr3混合体系:按95:5比例混合1.2 M甲脒铅碘(FAPbI3)与甲基铵铅溴(MAPbBr3)溶液(DMF:DMSO=4:1体积比)。
Cs掺杂:将40 μL 1.5 M CsI(DMSO溶液)与960 μL混合钙钛矿溶液混合。
2D/3D钙钛矿混合:按等摩尔比配制苯乙胺铅碘(PEA2PbI4)前驱体,与MAPbI3或混合钙钛矿前驱体混合,形成二维/三维钙钛矿异质结。
4. 电子传输层(ETL)制备
PCBM层:以20 mg/mL浓度的[6,6]-苯基-C61-丁酸甲酯(PCBM,Nano-C)氯苯溶液,3000 rpm旋涂40秒,90°C退火20分钟。
电子界面修饰:旋涂浴铜灵(BCP,Sigma-Aldrich,96%纯度)甲醇溶液(0.5 mg/mL),4500 rpm转速下旋涂30秒。
5. 电极制备与封装
顶电极:通过热蒸发沉积银(Ag)电极,完成器件组装。
6. 柔性基底工艺:
基底选择:采用超薄聚对苯二甲酸乙二醇酯(PET)基底,通过范德华力(van der Waals interaction)贴附于聚二甲基硅氧烷(PDMS)/玻璃复合基板。
剥离工艺:器件制备完成后,因PDMS与PET间作用力较弱,可直接剥离获得柔性器件。
索比光伏网 https://news.solarbe.com/202506/06/390028.html
本站标注"来源:碳索光伏网"或"索比咨询"的作品,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。
经授权使用者,须严格在授权范围内使用,并在显著位置标注来源,不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。
在SNEC 2025光伏盛会期间,北京碳索新能信息服务有限公司(以下简称“碳索”)依托旗下“碳索新能”小程序,重磅推出“人脉圈”“广告墙”“采购指南”等核心功能,以数字化工具助力参展商与观众精准对接资源。作为碳索旗下核心媒体平台,索比光伏网全程提供内容与技术支撑,双平台协同打造“展会+服务”生态闭环。
2025年6月11日至13日,北京碳索新能信息服务有限公司(以下简称“碳索”)携旗下权威媒体平台索比光伏网,于上海SNEC 2025展会8.2H-E530展位打造沉浸式互动空间,通过三天连轴活动深度链接产业资源,展现“媒体+平台”协同创新的行业服务力。
二维材料因其超薄、高性能的特性,在下一代电子器件领域中展现出巨大潜力。石墨烯、过渡金属硫族化物(如MoS₂)等材料的出现,为构建更小、更快、更智能的电子器件提供了基础。然而,要真正将这些材料应用于大规模集成电路中,制造工艺的突破是关键的一步。
全钙钛矿串联太阳能电池的可扩展制造具有挑战性,因为由混合铅锡(Pb-Sn)钙钛矿薄膜制成的窄带隙亚电池存在结晶不均匀和埋藏钙钛矿界面较差的问题。使用Good’s生化缓冲液清单中的一种掺杂剂氨基乙酰胺盐酸盐来均匀化钙钛矿结晶,并用它来延长刮涂Pb-Sn钙钛矿薄膜的加工窗口,并选择性地钝化埋藏钙钛矿界面处的缺陷。所得到的全钙钛矿串联太阳能组件的功率转换效率为24.5%,孔径面积为20.25平方厘米。
6月11日,TÜV南德意志集团(以下简称“TÜV 南德”)于2025年第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会(简称“SNECPV+”)期间与中国计量科学研究院(以下简称“中国计量院”)、天合光能股份有限公司(以下简称“天合”)签署三方战略合作协议。TÜV南德新能源可靠性与标准化研究院院长张祝林,中国计量院首席计量师、研究员熊利民,天合光能电池组件质量管理部负责人王兵等嘉宾出席签约仪式。此次战略合作协议的签署将进一步加深三方在光伏领域的合作与发展,提升产品性能以满足技术规范的要求。
上海国家会展中心,光伏行业年度盛典 SNEC 2025 热度再创新高 。仁卓智能展台(3H-A160)成为“人气与技术口碑双高”!两大王牌产品首发,三场前沿技术发布,国际权威认证加冕,共同奏响光伏支架领域的创新最强音。
6月11-13日,第十八届SNEC PV+国际太阳能及智慧能源(上海)展览会圆满落幕。在这场全球光伏行业的顶级盛会上,华晟新能源以“技术引领、生态共建、全球共赢”为核心,与全球顶尖合作伙伴达成多项战略签约,覆盖技术研发、材料装备、场景应用、标准认证及市场布局全链条,标志着异质结技术商业化进入规模化提速阶段。
近日,在 SNEC 第十八届国际太阳能光伏与智慧能源(上海)大会暨展览会期间,全球太阳电池领域权威专家、被誉为 “太阳电池之父”的澳大利亚新南威尔士大学(UNSW)马丁・格林教授率领科研团队莅临一道新能展台。一道新能董事长、总裁刘勇先生、首席技术官宋登元博士全程陪同,双方围绕一道新能的最新N型科技成果以及光伏前沿技术深入合作进行了深度交流与座谈。
6月13日,2025年SNEC展会进入尾声。尽管光伏行业正经历深度调整期,但本届展会仍以38万平方米展区、3600余家参展商、超50万人次观众的规模创下新高。国际展商占比达30%,覆盖近100个国家,预计观众将超过50万人次,凸显其在全球能源转型中的风向标地位。
2025 年6 月11 日至13 日,第十八届SNEC 国际太阳能光伏与智慧能源(上海)大会暨展览会在国家会展中心(上海)盛大启幕。这场全球新能源行业的顶级盛会,以38 万平方米的宏大展览面积,汇聚了超3500 家参展商、5000 余名学术专家,吸引50 万人次专业观众纷至沓来。在这场行业盛宴中,浙江铭安集团以“光伏新政破局者” 的鲜明定位惊艳亮相,凭借深度政策解读、智能互动体验与全民参与活动三大亮点,成为全场瞩目的焦点,全方位展示其在光伏新政浪潮下的战略布局与创新实践。
2025年6月11-13日,SNEC国际太阳能光伏与智慧能源大会在上海国家会展中心盛大举行。全球领先的物流服务提供商德迅集团首次以参展商身份亮相这一行业盛会,向全球光伏产业展示了其专业的新能源物流解决方案与卓越的服务能力。