高性能钙钛矿太阳能电池需要协同钝化策略来解决电子传输层(ETL)/钙钛矿界面的缺陷,这些缺陷会影响效率和长期稳定性。鉴于此,浙江大学刘鹏&高翔院士&浙江工业大学潘军&西湖大学王睿于《Angewandte Chemie Internati》发文“Synergistic Dual-Interface Engineering in Perovskite Solar Cellsvia Chloramine Hydrochloride Molecular Bridges”通过氯胺盐酸盐分子桥实现钙钛矿太阳能电池的协同双界面工程的研究成果,本研究引入氯胺盐酸盐(CAH)——2-氯乙胺盐酸盐(CEA)、双(2-氯乙基)胺盐酸盐(BCEA)和三(2-氯乙基)胺盐酸盐(TCEA)——作为双功能分子桥,可同时钝化ETL(SnO2)和钙钛矿界面的缺陷,并控制结晶过程。密度泛函理论计算表明,TCEA可形成强的Sn-Cl键,增强Sn4+配位。原位表征表明,TCEA加速了钙钛矿的形成,抑制了PbI2的生成,并促进了晶粒长大,从而最大限度地减少了晶界缺陷。这提高了电子提取效率,延长了热载流子冷却时间,并实现了25.25%的最高功率转换效率(PCE)(对照组为23.64%),滞后现象几乎可以忽略不计,且在环境条件下1000小时后,效率仍能保持90%。这项研究为高效稳定的钙钛矿太阳能电池的双界面工程建立了一种通用的分子设计策略。
创新点:
1)首次设计氯胺盐酸盐分子桥实现SnO₂/钙钛矿双界面协同钝化,TCEA通过多Cl分支形成强键合(2.23 eV);2)揭示分子调控结晶机制,TCEA促进α-FAPbI₃相形成并抑制PbI₂,使晶粒增大至1170 nm;3)优化载流子提取与热载流子冷却,实现25.25%效率且1000小时湿热稳定性保持90%。未来展望:
1)未来研究可进一步探索氯胺盐酸盐分子结构的精准调控,优化Cl分支数量与空间构型以增强界面钝化效果;
2)拓展该策略至其他钙钛矿组分体系,验证其在宽带隙或锡基钙钛矿中的普适性;
3)开发规模化制备工艺,结合分子工程与器件集成技术推动产业化应用。
索比光伏网 https://news.solarbe.com/202506/09/390097.html