
文章介绍
钙钛矿太阳能电池 (PSC) 的效率得到了显着提高,但不平衡的 δ 到 α 相结晶转变动力学和缺陷仍然是器件可重复性和稳定性的重大障碍。
基于此,中科院化学所宋延林等人利用草酸胍 (GAOA) 作为离子对稳定剂,同时调节结晶动力学并稳定α相钙钛矿。GAOA 和 Pb-I 框架的氢键和双齿螯合静电相互作用有效调节δ 到 α 结晶相变速率,限制溶剂蒸发过程中组分的损失。该策略证明了对 n-i-p 和 p-i-n 结构的 PSC 的广泛适用性,冠军功率转换效率 (PCE) 分别为 25.33% 和 25.37%。此外,组件的有效面积 PCE 在 37.9 cm2 中高达 21.97%,在 641.4 cm2 中高达 19.25%。此外,根据 ISOS-D-1 和 ISOS-L-1 协议,这些装置在 1000 小时内保持 93% 的初始效率,在 500 小时内保持 95% 的初始效率。该论文近期以“Intermolecular interactions triggered crystallization phase transition regulation for efficient and stable perovskite photovoltaics”为题发表在顶级期刊Energy & Environmental Science上。


图1. GAOA与钙钛矿的相互作用机理。(a-c)GAOA、GASA、GAMA分子及分别与FAI和PbI2混合的的碳谱。(d)GOA分子、FAI和GOA/FAI混合物的FTIR光谱。(e)GOA分子的FTIR光谱,(f)PbI 2和DMF/DMSO/GAOA、FAI和DMF/DMSO/GAOA的分子结构和(g)计算的结合能,(h)在制造过程中,随着退火持续时间的变化,残余DMSO与FA+的比率的演变。

图2. 钙钛矿结晶动力学的调制。(a)对照和(B)目标钙钛矿膜的GIWAXS强度沿沿着qz方向的时间演变。(c)GIWAXS峰位置和强度随时间的演变。(a)对照和(B)目标钙钛矿膜在退火下的原位PL光谱的2D等高线图。(f)在780 nm处对应的PL强度作为对照和目标钙钛矿膜的退火时间的函数。(g)对照和(h)目标钙钛矿膜在不同退火温度下的半原位XRD图案(分别为25 °C、40 °C、60 °C、80 °C、100 °C、120 °C).(i)XRD峰位置随温度的演变。

图3. GAOA在减少钙钛矿缺陷中的功能。(a)对照和(d)目标钙钛矿膜的均方根粗糙度(RMS)分析。从KPFM获得的(B)对照和(e)目标钙钛矿膜的CPD映射。图3c的(e)对照钙钛矿膜的KPFM的线轮廓,和(f)图3d的目标钙钛矿膜。(g)从SCLC方法获得的暗J-V曲线,具有ITO/SnO 2/钙钛矿/C60/BCP/Ag的单电子器件结构。(h)PSC器件的光强度依赖性VOC。(i)PSC的TPV衰减曲线。

图4. 钙钛矿器件的性能。(a)n-i-p结构器件和(B)p-i-n结构器件的J-V曲线。(c)PSC的PCE的统计分布。(d)对照的具有积分JSC的EQE光谱。(24.82 mA cm-2)和目标(25.07 mA cm ~(-2))n-i-p结构的器件。(e)有源面积为37.9 cm ~ 2的组件的J-V曲线。(f)有效面积为641.4cm 2的模块的J-V曲线。

图5. 钙钛矿薄膜和器件的稳定性。在N2气氛中,在一个太阳照射和85 °C加热下,钙钛矿前体溶液(a)不含(对照)和(B)含GAOA(目标)的吸收边演变。(c)对照和(d)目标钙钛矿薄膜在连续85 °C处理下的伪二维PL光谱演变(e和f)在环境温度(~25 °C和~ 25%RH)下钙钛矿微晶的XRD图案。(相对湿度:将微晶研磨成粉末以完全暴露于水分。(g)PSC在黑暗中的稳定性(h)连续MPPT操作稳定性(1-太阳等效白色LED照明),适用于带封装的控制和目标设备(ISOS-L-1)。
总之,作者提出了一种结晶动力学调控策略,利用胍衍生物GAOA作为分子锚,通过氢键和双齿螯合静电相互作用与钙钛矿形成牢固的结合,从而有利于加速溶剂蒸发,调节结晶相变,以及稳定α相钙钛矿。由于获得了高质量的钙钛矿薄膜,该器件对于n-i-p结构的PSC表现出25.33%的PCE(认证效率为25.08%),对于p-i-非结构的PSC表现出25.37%的PCE。相应的模块分别实现了21.97%(37.9 cm 2)和19.25%(641.4 cm 2)的有效面积PCE。值得注意的是,根据ISOS-D-1协议,这些器件在1,000小时内保持了93%和95%的初始PCE,根据ISOS-L-1协议,保持了500小时。这项工作为制造高效、稳定的PSCs提供了一种可行的途径,并为钙钛矿太阳能电池组件技术的结晶控制提供了新的可行性。
器件制备
器件制备:
ITO/SAM/PVSK/PI/C60/BCP/Ag
1.洗干净的FTO玻璃,MeO-2PACz(0.5mg/mL 乙醇),3000rpm 30s旋涂,100℃退火10 min;
2. Rb0.05Cs0.05MA0.05FA0.85Pb(I0.95Br0.05)3溶于 DMF:DMSO =4:1(v/v),将不同的GAOA滴入前驱体中,5000rpm 40s旋涂,在结束前20s内滴加400 uL CB,100℃退火30 min;
3. 0.3 mg/mL PI IPA,4000rpm 30s旋涂,105℃退火10 min;
4. 蒸镀20 nm C60,8 nm BCP和100 nm Ag。
模组:
1. 在30×30 cm 2 ITO衬底上,通过激光划片系统将P1、P2和P3互连,将面积为641.4 cm 2的组件串联起来。采用1064 nm激光刻蚀三道划片,GFF为97.88%。P1工艺完成后,清洗衬底,磁控溅射沉积NiOx层。通过对P1工艺的分析,确定了P2工艺的最佳工艺条件。
2. SAM层通过以15 mm/s的涂布速度在ITO/NiOx基底上狭缝式涂布0.5 mg/mL SAM来形成,在室温下,衬底砂模头之间的距离为~60 µm,并在100 ℃下进一步退火10 min。
3. 通过添加GAOA制备钙钛矿前体溶液,并将其沉积在ITO/NiOx/在室温下,通过狭缝模头涂覆SAM基底,涂覆条件为涂覆速度为20 mm/s,基底砂模头之间的距离为~60 µm。真空快速抽气至10 Pa以下,减压保持1 min,然后在100 ℃下退火30 min
4. 将LiF和C60依次热蒸发到钙钛矿膜上,并通过原子层沉积法沉积SnO 2。采用磁控溅射法依次沉积了20 nm ITO和80 nm Cu,最后制作了连接子电池的P3线。
文章信息
H. Guo, Y. Wang, K. Zhang, M. Tao, L. Guo, X. Zhang, Z. Song, J. Wen, T. Hou, Y. Huang, Y. Song, Intermolecular interactions triggered crystallization phase transition regulation for efficient and stable perovskite photovoltaics. Energy & Environmental Science, (2025).
DOI: 10.1039/d5ee01031d
索比光伏网 https://news.solarbe.com/202506/09/390087.html

