功率组件面临的高电压、高电流、热斑及隐裂等潜在风险,创新采用了三分片、无损切割、高密度封装等先进技术解决方案。应对全新的挑战,天合光能团队联合合作伙伴共同开发行业首例高速无损切割、基于210mm电池片的
多主栅均匀焊接、全新版型的自动排版及叠层焊接等量产配套装备,并实现稳定生产。
天合光能至尊系列双面双玻组件
至尊系列集成了天合光能二十余年的制造工艺技术沉淀,和公司在产品集成、下游系统等诸多
有所降低,从而化解可能产生的技术风险。
另一相同点在于,两家公司也将无损切割技术用在了大硅片组件上。使用常规激光切割的话,一切为三的电池片可能会出现切割损伤,焊接过程中容易造成隐裂。而无损切割能大幅度
间距是2毫米,并没有采用小间距或者叠片焊接的方式,这与东方日升相对保守的可靠性控制体系相关,日升对于小间距和叠焊技术中二次压扁焊带的可靠性风险持保守态度,需要更多研究分析。同时由于电池片间的光学反射作用
),刮刀继续往前推移是,则因网版张力及离版间距,使油墨脱离网版,附着于印刷基材上,达到印刷的目的。
1.2 作用
1. 收集电流;
2. 引出电流;
3. 将单体电池焊接成串
。
2. 丝网印刷流程&作用
2.1 印刷流程
2.2 背电极印刷
a. 作用:形成良好的欧姆接触特性、焊接性能和附着性;
b. 银浆组成:银铝浆是由
体现在工装夹具上,改造费用均摊到每瓦成本上并不高,组件产线也只需更换载板,调整焊接,改造难度不大。在组件辅材比如EVA、背板、玻璃方面,只需要调整尺寸,难度较小。
对比时下被市场追捧的166mm
电池片、组件设备规模改造费用比158.75mm所需费用多2~3倍,因此,除了隆基与其下游电池片厂外,其他多数厂家仍是观望状态。
在电池工艺方面,166mm和210mm在硅片及电池制造方面将遇到一些
/T20047(或IEC61730)标准要求,通过国家批准认证机构的认证,关键部件和原材料(电池片、封装材料、玻璃面板、背板材料、焊接材料、接线盒和接线端子等)型号、规格及生产厂家应与认证产品一致。3
,随后将串焊、层叠过程做调整;在电池端,半片技术仅需调整电池版图。
2.1 串焊
用焊带将各个电池片正反面焊接起来,组成串联的电池串。
主要工艺控制:虚焊、过焊、裂片和焊接拉力
电池片切半,使电池工作电流减半,明显降低焊带上的电学损失,提高组件CTM:
半片组件电池间空隙增大,照到背板经玻璃反射到电池的光略有增加;电池片电流越高,使用半片技术带来的价值越大。
2
生产线的系统集成建设,引进大尺寸高速电池片焊接机、自动层压机、自动汇焊设备、组件功率测试仪、划片机、视觉检测设备及大尺寸组件流水线等,项目建成后兼容大尺寸半片光伏组件、双面双玻光伏组件、半片双玻组件等新型光伏组件产品,单块组件功率超过400W。
电池片企业共同完成。作为HJT低温浆料产品,印刷工艺、网版参数、印刷耗材、烘干及固化工艺,甚至之后的电池互联焊接工艺均能印象到产品性能的评估。
三、HJT低温银浆发展趋势
作为影响HJT电池性能的
高效晶硅电池基本持平,主要技术难点是低温银浆的导电性能较低,且浆料产品占电池制造的非硅产品部分超过50%。因此,HJT银浆的突破对电池的产业化至关重要。因HJT银浆的高导电性、高焊接拉力、快速印刷等
不断刷新组件端产品的功率、效率等性能输出,光伏组件厂商也在不断突破自身的研发能力,生产匹配市场增长速度的高质量产品。
事实上,市面上采用5切和6切,再利用导电胶进行互联的叠瓦技术,具备有效消除电池片
结构和组件金属化互联两个方面入手,以及从设备和材料上进行更深层次和更高等级的系统升级,融合了半片、多主栅以及叠焊三大技术,攻克了在实际生产中多主栅焊带定位对准及焊接牢固和叠焊技术可靠性的问题。
从
电池片效率以及叠焊方案对组件效率的提升,带来项目初始投资的同时,有效提高组件发电量。不仅如此,通过对电池片接触部分的焊带进行整形处理,在接触部分保证焊带和电池片更充分的接触,保证组件可靠性。 晶科