),就可以完成Topcon电池正面氧化铝/氮化硅 ,背面遂穿氧化层/多晶硅与氮化硅的钝化。体现了该设备优异的整合能力与生产的可调度性。固定资产投入具备竞争力,同时工艺路线也可简化与控制。
该设备平台
制备的钝化膜体现了优异的镀膜均匀性和方阻均匀性,掺杂钝化效果也明显优于传统的磷扩散工艺,同时在钝化表现部分,也展现了综合的正背面钝化能力。
Topcon电池技术极大地简化了电池生产工艺,性价比高,且能量转化率高,最有望作为下一代N型高效电池的切入点。
定的状态。这是粉末系统在高温下能烧结成密实结构的原因。
4.2 烧结目的
a. 燃尽金属浆料中的有机成分;
b. 烧穿绝缘的氮化硅膜,使浆料中的金属和硅熔融合金,形成欧姆接触;
c. 对经过
等离子轰击的硅片退火,激活掺杂的原子,消除晶格损伤;
d. 激活氮化硅膜(SiNx.H)中的氢离子,使之钝化硅片内部晶格缺陷。
4.3 正银烧结效果图
4.4 背场烧结效果图
& Rau SiNA XXL 平板式镀膜设备制备厚度为84~88 nm 的正面氮化硅膜和厚度为130~140 nm 的背面氮化硅膜,折射率范围为2.08~2.10,背面氮化硅膜较厚是因为需要避免铝浆中的
、PECVD 沉积氮化硅膜、丝网印刷等工序。其中大部分设备可以和 perc+se 产线共用,只需要额外增加硼扩散、LPCVD 沉积(隧道结制备环节)、离子注入(或者扩散装备)和去绕镀清洗环节设备,便可
产线上升级改造,可延续存量产能使用寿命
TopCon 电池:基于N 型硅衬底,前表面采用叠层膜钝化工艺,背表面采用基于超薄氧化硅和掺杂多晶硅的隧穿氧化层钝化接触结构,可双面发电。得益于超薄氧化硅和掺杂
相比, PERC 电池背面增加了氧化铝 AlOx,氧化硅 SiOx 和氮化硅 SiNx 等钝化叠层, 因此电池的表面复合速率大大的降低,电池的开压 VOC 可以提升 15-20mV。而且,由于背面钝化
工序,即可实现 BSF 向 PERC 的转化。PERC 电池的工艺流程包括:沉积背面钝化层,然后开槽形成背面接 触。相较常规光伏电池的工艺流程新增了两个重要工序,只需在传统电池产线 上额外增加钝化膜
,成本仍然较高。HJT技术具有较高的壁垒,比当年PERC工艺技术跨度更大。HJT非晶硅膜要求是3/6nm,而PERC要求氧化铝/氮化硅厚度为20-80nm,尽管也有厚度要求,更多是出于节省材料考虑,即使
PERC电池制造工艺
爱旭科技PERC双面电池通过热氧化工艺,在硅片正面生成致密的SiOx薄膜层,结合高折射率的氮化硅减反膜,可以有效地阻隔金属离子,提高正面抗PID性能;针对更为棘手的背面PID问题
电站投资商损失惨重。
近两年双面发电组件由于可以大幅提升电站投资商收益,所以得到了大规模发展及应用。双面组件的PID问题得到了业界的广泛重视。
PERC双面电池背面的钝化膜AlOx/Si界面
电池量产发挥出重大作用。在目前主流量产技术的PERC电池上,微导推出的全新单面钝化镀膜技术结合臭氧新工艺方案,可以将量产效率提高0.1%,背膜产能提升20%,单机产能提升近一倍,超过10000片/小时
得出结论,ALD和PECVD镀膜技术在降低LeTID衰减中的有着明显不同的表现。根据新南威尔士大学的分析,其原因在于ALD 三氧化二铝薄膜具有高质量,致密无针孔的特性,可以有效阻挡氮化硅薄膜中的
量产技术的PERC电池中,微导推出的全新单面钝化镀膜臭氧新工艺方案,可以将量产效率提高0.1%,背膜产能提升20%,单机产能提升近一倍,超过10000片/小时,进一步降低了氧化铝工序的生产成本
的分析,其原因在于ALD 三氧化二铝薄膜具有高质量,致密无针孔的特性,可以有效阻挡氮化硅薄膜中的氢原子向电池内部的扩散,从而减少LeTID衰减。而PECVD氧化铝薄膜由于存在较多缺陷和针孔,无法阻挡
、捷佳创低压扩散炉; 三是边缘刻蚀和去磷硅玻璃,此环节需要仪器SCHMID刻蚀机、SCHMID自动动化仪器; 四是背钝化在硅片背面沉积三氧化二铝膜和氮化硅膜,此环节需仪器MeyerBurger的