电池的一条裂缝,其延伸可能导致超过一个电池10%以上面积从组件的电路上减少;d)在组件的边缘和任何一部分电路之间形成连续的气泡或脱层通道;e)丧失机械完整性,导致组件的安装或工作都受到影响。如果一个组件
/T9535)对于组件严重的外观缺陷有如下定义:a)破碎、开裂或外表面脱附,包括上层、下层、边框和接线盒;b)弯曲、不规整的外表面,包括上层、下层、边框和接线盒的不规整以至于影响到组件的安装或运行;c)一个
、发黄、脱层等老化或失效现象,甚至产生组件功率加速衰减和安全隐患。
出现这些隐患的根源在于材料本身,通过测试及实际案例证明,PVDF薄膜除了本征横向力学性能差的特点外,在紫外、湿热、PCT或低温老化测试
磨损等各种平衡的性能。
而实现这些关键性能,与背板材料密不可分。
自20世纪八十年代NASA晶硅组件研究项目完成以来,玻璃前板+EVA+双面Tedlar PVF薄膜复合背板的经典光伏组件封装结构
低,熔融流动性好。但是其耐热性较差,易延伸而低弹性,内聚强度低而抗蠕变性差,易产生热胀冷缩导致晶片碎裂,使得粘接脱层。2.4 EVA胶膜作用与使用注意事项封装电池片,防止外界环境对电池片的电性能造成
市面上一些其它背板材料在户外短期内即出现了明显的开裂、发黄、脱层等老化或失效现象,甚至产生组件功率加速衰减和安全隐患。出现这些隐患的根源在于材料本身,通过测试及实际案例证明,PVDF薄膜除了本征横向
、耐腐蚀和耐风沙磨损等各种平衡的性能。而实现这些关键性能,与背板材料密不可分。自20世纪八十年代NASA晶硅组件研究项目完成以来,玻璃前板+EVA+双面Tedlar PVF薄膜复合背板的经典光伏组件
。 4. 组件的每片电池与互连条应该排列整齐,组件的框架应整洁无腐蚀斑点。 5. 组件的封装层中不允许气泡或脱层在某一片电池与组件边缘形成一个通路,气泡或脱层的几何尺寸和个数应符合相应的产品详细规范规定
更低廉的其他型号、其他材质的背板穿插其中。也有时候使用了未达到要求的产品导致背板本身性能不达标,如胶水不合格易导致背板脱层等。EVA的失效方式只要在在于EVA容易水解,产生气泡和蜗牛纹现象。玻璃的失效
出现脱层、龟裂、起泡、黄变等状况,从而造成电池模块脱落、电池片滑移、电池有效输出功率下降等不良影响,在低压、低电流下有时会出现电打弧,导致发生背板和组件燃烧事件甚至发生火灾,对组件安全发电及运营
是由玻璃面板、热熔胶膜EVA、电池片、背板材料、接线盒等组成,其中除电池片外均为封装材料。太阳光照射到光伏组件上,光伏组件电池片吸收光电子进行光电转换(如图1所示),从而实现太阳能光伏发电。除了电池片
FraunhoferISE2012年对世界范围内的组件故障情况也进行了统计,其中常见的组件质量问题有碎片(隐裂)、焊接连接性失效、电池片衰减、接线盒材料和线缆绝缘失效、热斑、封装材料(EVA)的脱层、电位诱发衰减效应(PID)、互联
(隐裂)、焊接连接性失效、电池片衰减、接线盒材料和线缆绝缘失效、热斑、封装材料(EVA)的脱层、电位诱发衰减效应(PID)、互联失效(焊接)、背板的机械性能失效、接插件故障等。近年来,随着技术进步,这
、耐用性等方面得到保证。 下面分析EVA脱层问题分析: EVA脱层对组件造成的影响:脱层面积较小时影响电池组件大功率失效;当脱层面积较大时直接导致电池组件失效报废。 造成太阳能电池组件EVA脱层的原因