背板材料关键性能分析科普帖

来源:世纪新能源网发布时间:2016-07-05 23:59:59
索比光伏网讯:光伏晶硅组件中的背板作为保护电池片和封装材料的直接屏障,对组件的安全性、长期可靠性和耐久性起着至关重要的作用。要达到保护的目的,背板需具备良好的机械强度与韧性、耐候性、绝缘、水汽阻隔、耐腐蚀和耐风沙磨损等各种平衡的性能。

而实现这些关键性能,与背板材料密不可分。

自20世纪八十年代NASA晶硅组件研究项目完成以来,玻璃前板+EVA+双面Tedlar® PVF薄膜复合背板的经典光伏组件封装结构经过了各类气候条件的实践检验,并被沿用至今。其中,特能®(Tedlar®) PVF薄膜作为唯一具有30年以上广泛户外实绩验证的背板材料也已被系统开发商、金融保险等投融资机构认可,能够为光伏组件提供长期可靠保护,确保投资回报。

完美材料需结合自身优势与独特加工工艺

由双面Tedlar® PVF薄膜组成的TPT背板 (Tedlar®/PET聚酯薄膜/Tedlar®)已经成为了行业标杆,尽管市面上不断有各种山寨品出现,但无一能超越其优异的产品性能。

那么问题来了,为什么是聚氟乙烯(PVF)薄膜?

首先,聚氟乙烯(PVF)薄膜采用双向拉伸制造工艺,所制备的薄膜在横向和纵向两个方向都经过强化,机械性能均衡没有弱点。由于PVF薄膜加工温度和分解温度接近,要求极高的工艺控制,并且投资巨大,这也是目前只有杜邦公司能够生产的主要原因,从而保证了Tedlar®薄膜产品质量的可靠性和一致性。

相对而言,聚偏氟乙烯(PVDF)薄膜主要使用吹膜和流延两种成型工艺。这两种成型工艺制备的薄膜在纵向方面有不同程度的拉伸,但在横向的拉伸都很弱或甚至没有拉伸,造成薄膜横向机械性能均较差。另外,PVDF自身难以成膜,必须添加其他材料—不低于30%的PMMA,俗称亚克力,固有脆性很强。添加亚克力之后容易造成PVDF薄膜横向力学性能差的缺陷,主要表现为断裂伸长率低,一般低于30%。

为了弥补这个缺陷,个别厂家在配方中添加弹性体,使得这类PVDF薄膜在力学性能测试时产生“藕断丝连”般的效果,以达到更高的测试结果,但对实际的户外耐老化性能毫无帮助。另外,由于PVDF薄膜加工难度和门槛相对较低,每家的工艺、配方和膜结构也有所差异,导致不同PVDF薄膜性能参差不齐。但很难从外观或一般的成分分析区别不同的PVDF薄膜,因此监管难度大。

力学性能欠佳容易导致开裂,严重影响组件安全性

众所周知,力学性能和耐候性是背板用氟膜最重要的性能,PVDF薄膜具有横向断裂伸长率低的缺陷,该问题已逐渐在测试和应用中暴露出来。虽然添加弹性体材料有助于PVDF薄膜在初始力学性能测试时由于拉丝效果显示较高的断裂伸长率,但是在轻微的老化测试后,所有PVDF薄膜横向断裂伸长率均低于10%,基本失去了高分子材料应有的韧性,极易开裂。而同样测试条件下的PVF薄膜力学性能保持良好,仍然能维持60%以上的保持率(如图1和图2 )。

QQ图片20160706104700
图1 五种不同PVDF薄膜与两种Tedlar® PVF薄膜在紫外500和1000小时紫外老化测试后的横向断裂伸长率比较(紫外测试条件:QUVA,1.25W/m2@340nm, 65W/m2 @ 300-400nm, 70oC BPT)
QQ图片20160706104729QQ图片20160706104746

图2五种不同PVDF薄膜与两种Tedlar®薄膜在湿热老化500和1000小时后的横向断裂伸长率比较
(湿热测试条件:85oC, 85%RH)
 PVDF薄膜不仅在紫外和湿热老化测试后横向断裂伸长率下降严重,在其他测试如PCT测试或耐温测试后也出现了同样的问题。大量研究文献及报道表明,这些问题与PVDF薄膜在老化时易产生再结晶有关,导致其力学性能变差。

PVDF薄膜的横向脆性导致其在户外存在较高的开裂风险,一旦背板开裂代表绝缘性能失效,很容易引发漏电、电弧、火灾等安全性事故,甚至导致人员与财产的损失。图3是在北美地区户外使用4年的PVDF背板形貌,平均开裂比例约57%,裂纹方向均沿纵向形成。

QQ图片20160706104927
图3 户外使用4年的PVDF背板外层开裂形貌
值得关注的是,目前除了在实际案例中发现大量PVDF薄膜背板开裂的现象外,在实验室采用序列老化测试(Accelerated Sequential Test)也已经可以模拟出PVDF薄膜及背板的开裂现象。研究发现,经过序列老化测试后,使用PVDF薄膜背板的小组件和大组件均出现微裂纹,且为纵向开裂,这在过去单一老化的测试中不会发现,然而在实际案例中却已被证实,因此采用适当的序列老化测试能更好地模拟户外老化的反应。

QQ图片20160706105004
QQ图片20160706105027
图4 使用PVDF背板的小组件(左)和全尺寸组件(右)在序列老化测试(DH1000+UV1000+TC200)后沿纵向开裂
耐热、耐风沙、耐化学品,缺一不可

作为背板用氟膜,还需要有较好的耐风沙磨损、耐热和耐化学品等性能。据了解,目前耐风沙磨损一般采用落砂试验,测试标准参照ASTM D968(亦即GB/T23988-2009),测试时需注意沙子使用次数不得超过25次以控制测试误差。

以0.25-0.65mm标准砂为例,38微米的PVF薄膜通常需要250L以上才可以落穿,而PVDF薄膜依厚度和工艺不同落砂量大约为100~250L,即便如此,仍好于涂覆型背板常见的50L左右落砂量。

再看耐热方面,PVF薄膜的软化温度点为190oC,而PVDF只有150oC左右。对于经常有热斑出现的光伏组件应用来说,PVF薄膜的耐热性能显然更有优势。

与此同时,PVDF薄膜在耐化学品测试方面也出现了问题,其在丙酮等溶剂浸泡试验(ASTM D543)中易出现溶胀现象,而PVF薄膜不存在该现象,对各类化学品的抵抗性都很优异。

认清含氟量,以实际为准

近年来含氟量成为最容易引起争议与讨论的一个环节,有厂家称PVDF含氟量59%,而PVF只有41%。然而,这句话正确理解的前提是单纯比较100%的PVDF和PVF材料。

事实上,100%的PVDF不能成膜,只能用作涂料。市面上在售的PVDF薄膜都含有亚克力增塑剂,成膜后的PVDF薄膜的含氟量大幅降低。而以PVF制成的Tedlar®薄膜不含有其他树脂成分,41%为实际含氟量。FEVE涂料也存在有易令人误解的说法,声称含氟量超过70%,但这只是氟树脂自身的含氟量,不包含非氟的交联树脂部分和其他添加剂,其实际含氟量低于20%。

水汽阻隔力:PET层才是关键

从背板应用来看,氟膜的水汽阻隔性能对背板整体的水汽阻隔能力贡献很小。背板的水汽阻隔主要由PET提供,PET的阻水能力对背板的WVTR起决定作用。

当然,如果一定要比较氟膜之间的水汽透过率的话,也有很多实验数据可以参考。图5是几种常见PVDF薄膜和PVF薄膜的WVTR值。从图中可以看出,PVDF薄膜WVTR值在50~110之间,而两款Tedlar® PVF薄膜只有35~50,显著低于PVDF薄膜。

QQ图片20160706105156
图5 常见PVDF薄膜和Tedlar® PVF薄膜的水蒸气透过率(测试条件:ASTM F1249,红外法;38oC,100%RH)
 尽管以氟膜为主的背板已经被行业认可具有较优异的性能,但是此氟非彼氟,对于氟膜材料的认识、加工工艺的理解,以及在背板结构中扮演的关键角色,在行业内仍有许多误解。通过各项测试方法与户外案例显示,PVF薄膜具有优异的耐候性、力学性能、耐热、耐化学品、耐风沙磨损和水汽阻隔性能,产品一致性和稳定性好。基于特能®(Tedlar®)PVF薄膜的背板在各种气候环境下都有超过25年的的实绩验证,而市面上一些其它背板材料在户外短期内即出现了明显的开裂、发黄、脱层等老化或失效现象,甚至产生组件功率加速衰减和安全隐患。

出现这些隐患的根源在于材料本身,通过测试及实际案例证明,PVDF薄膜除了本征横向力学性能差的特点外,在紫外、湿热、PCT或低温老化测试中也发现,其横向断裂伸长率可降到5%以下,大大提高了光伏组件在户外使用开裂的风险。
对于光伏投资者来说,清楚了解材料之间的基本差异,并选择最能保障其项目投资收益率的材料,才是降低风险的关键。
 

索比光伏网 https://news.solarbe.com/201607/05/165000.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
意大利科学家实现钙钛矿太阳能电池水下高效发电来源:恰逢小友初见 发布时间:2025-07-10 11:21:26

阳光穿透清澈水体,照射在仅0.5厘米深的实验装置中。意大利国家研究委员会物质结构研究所的科学家们记录下一组令人振奋的数据:经过特殊设计的钙钛矿太阳能电池,其在水下的功率转换效率(PCE)竟比在同等光照条件的空气中测试时高出约8%。这一发现挑战了钙钛矿材料“惧怕潮湿”的传统认知,为水下清洁能源应用开辟了新路径。

用于高效率、超稳定钙钛矿太阳能电池的局域相位调制异质结构韩国蔚山国立科学技术院&高丽大学来源:钙钛矿学习与交流 发布时间:2025-07-10 11:12:04

同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs 不同,韩国蔚山国立科学技术院&高丽大学研究团队引入一种全新的局域相位调制异质结构,它能够对 PSCs 产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。 这种局域相位调制异质结构 PSCs 实现了 26.0% 的优异 PCE(认证值为 25.28%)。多种表征证实了掺入 CY 的器件相比未掺入 CY 的参考器件

北京理工大学李红博 AM:32.0%!纳米晶核模板策略用于具有增强均匀性和能级对准的高效钙钛矿/硅叠层太阳能电池!来源:钙钛矿人 发布时间:2025-07-09 15:43:11

文章介绍宽带隙 (WBG) 钙钛矿太阳能电池 (PSC) 对于提高串联太阳能电池的效率至关重要,但存在严重的光电压不足和卤化物偏析,大大降低了其性能和稳定性。基于此,北京理工大学李红博等人开发了一种纳米晶-核模板 (N

有机双自由基分子:钙钛矿太阳能电池的新“界面魔术师”!来源:新能源与能效 发布时间:2025-07-08 16:39:59

近年来,钙钛矿太阳能电池(PSC)在光电转换效率(PCE)上频频突破,成为下一代光伏技术的热门方向。界面层材料——特别是自组装单分子层(SAM)——在提高电池性能方面扮演了至关重要的角色。然而,目前常规SAM存在电荷传输效率低、稳定性差和大面积可加工性差等瓶颈,限制了其商业化应用。

日立能源为泰国华富里地区52兆瓦太阳能发电厂部署MicroSCADA Pro系统来源:电力时代 发布时间:2025-07-08 11:53:08

日立能源已完成为泰国中部华富里府一座52兆瓦(MW)薄膜太阳能光伏(PV)发电厂交付一套全面的MicroSCADA Pro监控和控制系统。该项目由Serm Sang Palang Ngan有限公司开发,是泰国大力发展公用事业规模可再生能源的举措之一。

总投资1.5亿!曲靖市招商100MW钙钛矿叠层电池中试线项目来源:钙钛矿工厂 发布时间:2025-07-04 09:42:46

近日,曲靖市投资促进局发布一则2025年项目推介信息——曲靖市沾益区高效钙钛矿薄膜太阳电池中试线项目。总投资1.5亿,主要规划建设100MW钙钛矿叠层电池中试线3条,预计年研发钙钛矿电池规模为20万片的能力,配套建设组件研发中心、电池研发中心、研发大楼、组件研发车间、硅烷站、特气站、化学品供应站、废水处理站、固废库等生产及公辅用房。

电子科技大学刘明侦 NC:29.88%!柔性钙钛矿/硅单片叠层太阳能电池效率接近30%!来源:钙钛矿人 发布时间:2025-07-04 09:16:00

柔性钙钛矿基叠层太阳能电池具有成本低、重量轻、便于携带和整合等优点,在能量收集方面具有巨大的应用潜力,其中柔性钙钛矿/单晶硅叠层太阳能电池在实现高效率方面尤其有希望。然而,柔性钙钛矿/单晶硅叠层太阳能电池的性能仍然存在很大的差距,由于在同时实现有效的光生载流子传输和可靠的残余应力缓解方面的挑战。

江苏仕净缺陷电伴热带引发重大火灾,法院终审判定赔偿3736万元来源:网络 发布时间:2025-07-03 15:41:34

近期陕西省西安市中级人民法院近日就隆基绿能高陵基地火灾事故引发的侵权责任纠纷案作出终审判决(案号:(2025)陕01民终149号)。法院终审认定,火灾系因江苏仕净科技股份有限公司(以下简称“江苏仕净”)为隆基绿能提供的废气处理系统电伴热带存在产品缺陷所致,判决江苏仕净承担70%赔偿责任,赔偿隆基绿能损失人民币3736.11万元。

榴莲提取的有机硫分子修饰界面杭州电子科大严文生/周勤&福建物构所高鹏AFM通过鲁棒分子桥构建稳定掩埋界面用于高性能钙钛矿光伏来源:钙钛矿学习与交流 发布时间:2025-07-03 09:43:51

良性掩埋界面对显著提升钙钛矿太阳能电池的性能至关重要。然而,在钙钛矿薄膜沉积过程中确保掩埋界面层的完整性具有挑战性。由于钙钛矿前驱体溶液的高极性特性,大多数界面修饰材料会被溶解,从而影响器件的可扩展性和长期稳定性。杭州电子科技大学严文生/周勤&福建物构所高鹏研究团队引入一种有机分子来修饰 SnO₂与钙钛矿之间的掩埋界面,结果表明,溶解度和功能基团对构建良性掩埋界面至关重要。此外,SnO₂与钙钛矿层之间有效的化学桥接作用可抑制缺陷、改善结晶度并降低能量损失。最终,性能最优的钙钛矿太阳能电池实现了 25.08

异质伴同行 鑫动760|中国光伏太阳能高效760W+俱乐部第十三次圆桌会议圆满落幕来源:浙江润海新能源有限公司 发布时间:2025-07-02 09:20:10

6月26日,中国光伏太阳能高效异质结760W+俱乐部第十三次圆桌会议在江苏江阴圆满召开。本次会议由轮值主席单位中建材浚鑫科技有限公司牵头主办。安徽华晟新能源、广东明阳光伏、广东泉为科技、国电投新能源、国晟世安科技、金刚光伏、江苏光势能、琏升光伏科技、上海恒羲光伏、中建材浚鑫、浙江润海新能源、珠海鸿钧新能源(以上按中文首字母排序)等十二家俱乐部成员单位共聚一堂,并特邀中国国检测试控股集团股份有限公司、长沙壹纳光电材料有限公司、SOLARZOOM光储亿家共襄盛举。

华为数字能源郑越:以“构网”和“安全”引领行业高质量发展来源:中国能源报 发布时间:2025-07-01 10:46:53

6月23日,国家能源局发布1—5月全国电力工业统计数据显示,我国光伏发电装机规模突破10亿千瓦,占我国总发电装机容量的比重达30%、占全球光伏装机总规模的近一半。在我国乃至全球范围,新能源发展均保持着快速增长势头,而伴随着高比例新能源接入,电网稳定与新能源消纳成为亟待解决的核心难题。