阳光穿透清澈水体,照射在仅0.5厘米深的实验装置中。意大利国家研究委员会物质结构研究所的科学家们记录下一组令人振奋的数据:经过特殊设计的钙钛矿太阳能电池,其在水下的功率转换效率(PCE)竟比在同等光照条件的空气中测试时高出约8%。这一发现挑战了钙钛矿材料“惧怕潮湿”的传统认知,为水下清洁能源应用开辟了新路径。

长期以来,钙钛矿材料对水分的敏感性是制约其广泛应用的主要瓶颈之一,潮湿环境往往导致其性能迅速衰减甚至结构破坏。因此,“水下应用”被视为禁区。然而,杰西卡·巴里切罗(Jessica Barichello)博士及其团队敏锐地捕捉到水下物联网设备、生态监测传感器、特种作业装备等对分布式能源的迫切需求,决心系统探索钙钛矿电池在水下环境的表现边界。团队的成功源于材料科学与封装技术的协同创新:
采用聚异丁烯(PIB) 作为核心封装材料。PIB是一种高性能聚合物胶粘剂,广泛应用于要求苛刻的电子封装领域。
该封装层像一层坚韧透明的“防水服”,有效阻隔水分子渗透,保护内部脆弱的钙钛矿活性层。实验证实,经过PIB封装的电池在水下浸泡120小时后,钙钛矿薄膜结构保持完好,且通过了严格的铅泄漏安全测试。
关键优化: 团队精心选择了在水下有效光谱波段(主要为蓝绿光)具有高透过率的PIB配方,最大限度减少封装本身对入射光的损耗。

摒弃常规用于地面的钙钛矿配方,选用具有宽达2.3 eV带隙的FaPbBr3钙钛矿材料。
科学依据: 水下环境光照强度大幅减弱,且水分子对不同波长光的吸收不同,导致穿透水体的光谱主要集中于蓝绿光区域(400-550 nm)。普通硅基太阳能电池(带隙约1.1 eV)主要吸收红光和近红外光,对水下的优势蓝绿光吸收效率极低。
精准匹配: FaPbBr3 的宽带隙特性使其光学吸收边向短波长(蓝光)方向移动,完美契合水下优势光谱,从而显著提升对有限水下光能的捕获能力。
最令人惊讶的发现是:在极其浅层(0.5厘米)的清澈水下,优化后的钙钛矿电池效率反而比在空气中测试(同等光强、光谱)高出约8%。团队通过深入分析揭示了双重增效机制:
折射率匹配增效: 水的折射率(~1.33)介于空气(~1.0)和电池封装层/钙钛矿材料(通常>1.5)之间。这种折射率的过渡显著降低了光从水进入电池封装界面时的反射损失,其效果类似于在电池表面增加了一层高效的抗反射涂层。这直接导致了短路电流密度(Jsc)的显著提升,是效率提升的主要贡献者。
水温的“天然冷却”效应: 相较于空气环境,水体通常能提供更有效的散热。太阳能电池的PCE通常随工作温度升高而下降。因此,更低的水温有助于电池维持更高的工作效率,提供了额外的性能增益。
深度限制: 随着水深增加至3厘米、6厘米,可用光照强度因水体吸收散射而急剧下降,电池效率随之显著降低。这是水下光伏面临的普遍物理限制。
长期稳定性: 120小时的浸泡测试证明了封装的短期有效性,但面向实际应用的长期(数月乃至数年)水下稳定性仍需更严苛的验证,包括应对生物附着、水压变化等因素。
环境适应性: 目前实验在清澈静水中进行。真实海洋/湖泊环境的浑浊度、盐度、流动性和生物活动将带来更大挑战。

尽管如此,研究展现了巨大潜力。团队通过模拟计算指出,经过进一步优化的钙钛矿光伏系统,有望为部署在10米左右深度、功耗较低的水下物联网(IoUT)传感器节点等设备提供可行的能源解决方案。这大大扩展了水下设备的部署范围和自主运行时间。巴里切罗团队的成果并非孤例,但意义重大:2020年, 印度研究者观察到浸没的硅电池可能因水下低温而相对受益。2022年, 中国团队利用商用光伏组件开发了基于大面积感光的水下光探测系统。
本研究的划时代意义在于: 首次通过原创性的材料设计(宽禁带FaPbBr3)与封装技术(高性能PIB)相结合,不仅证明了钙钛矿能在水下稳定工作,更在特定浅水条件下实现了效率的反常提升。这彻底扭转了“钙钛矿遇水必败”的简单化认知,证明了其作为水下特种光伏材料的巨大潜力与独特优势。
科技突破往往始于对“常识”的勇敢质疑与实证。杰西卡·巴里切罗团队的工作,成功地将钙钛矿材料从“水牢”的刻板印象中解放出来。虽然从实验室走向广阔的海洋应用仍面临诸多工程化和环境适应性的挑战,但这项研究无疑为人类清洁能源的版图标注了一片充满希望的蔚蓝新域——阳光照耀下的浅海,正悄然孕育着一场静默的能源变革。为深入海底的探测器、守护生态的传感器网、智能化的养殖平台持续注入绿色能量,正从构想逐步走向现实。
索比光伏网 https://news.solarbe.com/202507/10/391222.html

