摘要
同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs 不同,韩国蔚山国立科学技术院&高丽大学研究团队引入一种全新的局域相位调制异质结构,它能够对 PSCs 产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。
这种局域相位调制异质结构 PSCs 实现了 26.0% 的优异 PCE(认证值为 25.28%)。多种表征证实了掺入 CY 的器件相比未掺入 CY 的参考器件性能更优异的关键原因。
在掺入 CY 的器件中,我们还发现未封装电池(85% 相对湿度(RH)、25°C、2000 h)和封装电池(85% RH、85°C、1000 h)分别具有 96% 和 71% 的优异 PCE 保留率,且 1.0 cm² 的大面积电池实现了 22.7% 的 PCE。

1. 研究背景与挑战
钙钛矿太阳能电池(PSCs)作为新兴光伏材料,功率转换效率(PCE)快速提升,但溶液法制备的钙钛矿薄膜存在结构缺陷(如空位、间隙、取代缺陷),导致离子迁移、复合损失,限制性能与稳定性。
现有异质结基 PSCs 多仅使用少量有机半导体添加剂,难以同时优化缺陷钝化和电荷提取。
2. 研究方法与核心设计
新型有机半导体 CY 的开发
结构:U 型不对称 Lewis 碱有机半导体,含 C=O、C=S、C≡N、F 等官能团。
特性:高偶极矩(7.64 Debye),强极性,可作为 Lewis 碱和氢键受体,与钙钛矿(如 FAPbI₃)形成强相互作用。
局域相位调制异质结构将大量 CY 掺入钙钛矿晶格、表面及晶界,而非仅作为表面 / 晶界添加剂,实现缺陷钝化、能级调制、晶格调整及晶相调控。

3. 光伏性能表征
小面积电池性能
(n-i-p 结构:FTO/TiO₂/FAPbI₃/spiro-OmetaD/Au):

外部量子效率(EQE)计算的光电流与 J-V 测试偏差≤1.5%,验证性能可靠性。
大面积电池性能
1.0 cm² 电池 PCE 达 22.7%(Jsc=24.8 mA cm⁻²,Voc=1.13 V,FF=81.0%)。
4. 结构与机理分析
结构表征
扫描电镜(SEM):CY 掺入使钙钛矿晶粒尺寸从 328 nm 增至 972 nm,减少晶界。
X 射线衍射(XRD):CY 使钙钛矿多晶性增强,晶格应力从压应变转为拉应变。
高分辨透射电镜(TEM):CY 掺入形成调制相,(111)晶格间距从 3.4 Å 增至 3.8 Å。
作用机理
缺陷钝化:CY 的 Lewis 碱官能团与未配位 Pb 结合,减少陷阱态,抑制复合(非辐射复合损失 ΔVocⁿᵒⁿʳᵃᵈ降至 42.6 mV)。
电荷传输:优化能级匹配,提升载流子迁移率,延长激子寿命(CY 掺入膜为 22±2 ns,对照为 13±1 ns)。
5. 稳定性测试
未封装电池85% RH、25°C 下存储 2000 h,PCE 保留 96%(对照仅保留~40%)。
封装电池85% RH、85°C 下存储 1000 h,PCE 保留 71%(对照损失~69%)。
原因:CY 使钙钛矿膜接触角增至 73.3°(对照 24.2°),增强疏水性,抑制水分侵蚀。
6. 结论
局域相位调制异质结构通过 CY 的大量掺入,实现了 PSCs 的高效率(26.0%)与超稳定性,为有机半导体 - 钙钛矿电池提供了新理论基础和应用范式。
器件制备
一、n-i-p 结构器件(FTO/TiO₂/ 钙钛矿 / Spiro-OmetaD/Au)
基底清洗与预处理
基底:氟掺杂氧化锡玻璃(FTO)
清洗:依次用去离子水、丙酮、异丙醇(IPA)超声清洗,随后进行 O₂等离子体处理 5 分钟。
TiO₂层制备
平面 TiO₂层:通过旋涂钛酸四异丙酯双 (乙酰丙酮) 的乙醇溶液(体积比 1:10)制备。
介孔 TiO₂层:旋涂 TiO₂浆料分散液(乙醇 / 松油醇体积比 78:22),随后在 500°C 热板上退火 1 小时(空气氛围),使 TiO₂结晶。
钙钛矿层制备
前驱体溶液:1.8 M 甲脒碘化铅(FAPbI₃)粉末 + 30 mol% 甲基氯化铵(MACl),溶解于 DMF:DMSO(体积比 4:1)混合溶剂中。
旋涂:将前驱体溶液旋涂于介孔 TiO₂层上,转速 6000 rpm,时间 50 秒。
反溶剂处理:旋涂过程中,在预定时间滴加含 CY 的氯苯(CB)溶液。
退火:先在 150°C 退火 10 分钟,再在 100°C 退火 30 分钟。
环境条件:相对湿度 15-20%,温度 20-25°C(洁净通风橱内)。
Spiro-OmetaD 层制备
溶液组成:Spiro-OmetaD + 离子掺杂剂 FK-209(乙腈溶解,浓度优化)+ 4 - 叔丁基吡啶。
旋涂:转速 4000 rpm,时间 30 秒。
Au 电极制备
方法:热蒸发,厚度 100 nm。
真空条件:基础压力 2×10⁻⁶ Torr。
性能测试条件
测试环境:N₂填充手套箱,室温。
二、p-i-n 结构器件(ITO/PTAA/ 钙钛矿 / PC₆₁BM/ZnO/Ag)
基底清洗与预处理
基底:ITO 导电玻璃。
清洗:依次用洗涤剂、去离子水、丙酮、IPA 超声清洗,随后进行 O₂等离子体处理。
PTAA 层制备
溶液:PTAA(2 mg/mL,溶于 CB)。
旋涂:转速 4000 rpm,时间 60 秒。
钙钛矿层制备
同 n-i-p 结构(前驱体组成、旋涂及退火条件一致)。
电子传输层制备
PC₆₁BM 层:20 mg/mL PC₆₁BM(溶于 CB),旋涂转速 3000 rpm,时间 30 秒。
ZnO 纳米颗粒层:ZnO 纳米颗粒(溶于异丙醇),旋涂转速 4000 rpm,时间 60 秒。
Ag 电极制备
方法:热蒸发,厚度 100 nm(图案化)。
注:
两种结构的制备过程中,仅 CY 的有无为变量,其他步骤(如清洗、旋涂参数、退火条件)严格一致。
图文信息

图 1. CY 的化学结构及 CY 对钙钛矿薄膜可能的局域相位调制机制

图 2.(a)CY 的密度泛函理论(DFT)模拟优化几何结构、偶极矩及静电势分布。(b)对照组和掺入 CY 的钙钛矿太阳能电池(PSCs)的电流 - 电压(J-V)曲线。实线和虚线分别表示反向(R)和正向(F)扫描方向。(c)对照组和掺入 CY 的钙钛矿太阳能电池的 30 个器件的功率转换效率(PCE)统计分布。(d)对照组和掺入 CY 的钙钛矿太阳能电池的外量子效率(EQE)光谱。(e)不同 CY 重量比的钙钛矿的能级图。最高占据分子轨道(HOMO)通过紫外光电子能谱(UPS)测量,最低未占据分子轨道(LUMO)通过从 HOMO 中减去由塔乌图(Tauc plots)确定的光学带隙得到

图 3.(a)对照组和掺入 CY 的钙钛矿薄膜的俯视图(上)和横截面图(下)的扫描电子显微镜(SEM)图像。(b)对照组和掺入 CY 的钙钛矿薄膜的 X 射线衍射(XRD)图谱。(c)纯 CY、对照组钙钛矿和掺入 CY 的钙钛矿薄膜的二维掠入射广角 X 射线散射(GIWAXS)图像,(d)及其相应的线切割谱图。(e)对照组和掺入 CY 的钙钛矿薄膜的高分辨率透射电子显微镜(TEM)图像(红色方框中的放大图像)

图 5. 对照组和掺入 CY 的钙钛矿太阳能电池(PSCs)的归一化功率转换效率(PCE):(a)在未封装情况下暴露于潮湿环境(85% 相对湿度(RH)、25°C、2000 小时)后;(b)在封装情况下置于湿热环境(85% 相对湿度(RH)、85°C、1000 小时)下。(c)对照组和掺入 CY 的钙钛矿薄膜的接触角测量结果。(d)面积为 1.0 cm² 的掺入 CY 的钙钛矿太阳能电池(PSCs)的电流 - 电压(J-V)曲线。在激发波为 510 nm 时,三种薄膜在 770±2 nm 发射波长(图 a 下栏中的谱线)处的时间分辨光致发光(PL)轨迹。每个瞬态过程均标注了重均寿命。实线为动力学轨迹的指数拟合(参见表 S5)。图中还展示了仪器响应函数(IRF)。(c)三种薄膜在监测波长为 756±3 nm、激发波长为 505 nm 时的飞秒瞬态吸收(fs-TA)动力学曲线。(d)三种薄膜在激发波长为 505 nm 时的飞秒瞬态吸收(fs-TA)光谱演化。800 nm 附近的阴影区域是若发生从钙钛矿到 CY 畴的电荷转移时,CY 分子基态漂白(GSB)谱带的预期区域
04
论文信息
论文标题:Local phase-modulated heterostructures for perovskite solar cells with high-efficiency and ultra-stability
发表期刊:《Energy & Environmental Science》
发表时间:2025年7月7日
作者:Yongjoon Cho, Donghwan Koo, Hak-Won Nho, Jeewon Park, Sangjin Yang, Ye-Jin Kim, Seonghun Jeong, Zhe Sun, Gyujeong Jeong, Eunbin Son, Oh-Hoon Kwon, Hyesung Park and Changduk Yang
查看原文(点击底部阅读原文跳转):
https://doi.org/10.1039/D5EE00897B
索比光伏网 https://news.solarbe.com/202507/10/391221.html

