用于高效率、超稳定钙钛矿太阳能电池的局域相位调制异质结构韩国蔚山国立科学技术院&高丽大学

来源:钙钛矿学习与交流发布时间:2025-07-10 11:12:03

摘要

同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs 不同,韩国蔚山国立科学技术院&高丽大学研究团队引入一种全新的局域相位调制异质结构,它能够对 PSCs 产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。

这种局域相位调制异质结构 PSCs 实现了 26.0% 的优异 PCE(认证值为 25.28%)。多种表征证实了掺入 CY 的器件相比未掺入 CY 的参考器件性能更优异的关键原因。

在掺入 CY 的器件中,我们还发现未封装电池(85% 相对湿度(RH)、25°C、2000 h)和封装电池(85% RH、85°C、1000 h)分别具有 96% 和 71% 的优异 PCE 保留率,且 1.0 cm² 的大面积电池实现了 22.7% 的 PCE。

1. 研究背景与挑战

钙钛矿太阳能电池(PSCs)作为新兴光伏材料,功率转换效率(PCE)快速提升,但溶液法制备的钙钛矿薄膜存在结构缺陷(如空位、间隙、取代缺陷),导致离子迁移、复合损失,限制性能与稳定性。

现有异质结基 PSCs 多仅使用少量有机半导体添加剂,难以同时优化缺陷钝化和电荷提取。

2. 研究方法与核心设计

新型有机半导体 CY 的开发

结构:U 型不对称 Lewis 碱有机半导体,含 C=O、C=S、C≡N、F 等官能团。

特性:高偶极矩(7.64 Debye),强极性,可作为 Lewis 碱和氢键受体,与钙钛矿(如 FAPbI₃)形成强相互作用。

局域相位调制异质结构将大量 CY 掺入钙钛矿晶格、表面及晶界,而非仅作为表面 / 晶界添加剂,实现缺陷钝化、能级调制、晶格调整及晶相调控。

3. 光伏性能表征

小面积电池性能

(n-i-p 结构:FTO/TiO₂/FAPbI₃/spiro-OmetaD/Au):

外部量子效率(EQE)计算的光电流与 J-V 测试偏差≤1.5%,验证性能可靠性。

大面积电池性能

1.0 cm² 电池 PCE 达 22.7%(Jsc=24.8 mA cm⁻²,Voc=1.13 V,FF=81.0%)。

4. 结构与机理分析

结构表征

扫描电镜(SEM):CY 掺入使钙钛矿晶粒尺寸从 328 nm 增至 972 nm,减少晶界。

X 射线衍射(XRD):CY 使钙钛矿多晶性增强,晶格应力从压应变转为拉应变。

高分辨透射电镜(TEM):CY 掺入形成调制相,(111)晶格间距从 3.4 Å 增至 3.8 Å。

作用机理

缺陷钝化:CY 的 Lewis 碱官能团与未配位 Pb 结合,减少陷阱态,抑制复合(非辐射复合损失 ΔVocⁿᵒⁿʳᵃᵈ降至 42.6 mV)。

电荷传输:优化能级匹配,提升载流子迁移率,延长激子寿命(CY 掺入膜为 22±2 ns,对照为 13±1 ns)。

5. 稳定性测试

未封装电池85% RH、25°C 下存储 2000 h,PCE 保留 96%(对照仅保留~40%)。

封装电池85% RH、85°C 下存储 1000 h,PCE 保留 71%(对照损失~69%)。

原因:CY 使钙钛矿膜接触角增至 73.3°(对照 24.2°),增强疏水性,抑制水分侵蚀。

6. 结论

局域相位调制异质结构通过 CY 的大量掺入,实现了 PSCs 的高效率(26.0%)与超稳定性,为有机半导体 - 钙钛矿电池提供了新理论基础和应用范式。

器件制备

一、n-i-p 结构器件(FTO/TiO₂/ 钙钛矿 / Spiro-OmetaD/Au)

基底清洗与预处理

基底:氟掺杂氧化锡玻璃(FTO)

清洗:依次用去离子水、丙酮、异丙醇(IPA)超声清洗,随后进行 O₂等离子体处理 5 分钟。

TiO₂层制备

平面 TiO₂层:通过旋涂钛酸四异丙酯双 (乙酰丙酮) 的乙醇溶液(体积比 1:10)制备。

介孔 TiO₂层:旋涂 TiO₂浆料分散液(乙醇 / 松油醇体积比 78:22),随后在 500°C 热板上退火 1 小时(空气氛围),使 TiO₂结晶。

钙钛矿层制备

前驱体溶液:1.8 M 甲脒碘化铅(FAPbI₃)粉末 + 30 mol% 甲基氯化铵(MACl),溶解于 DMF:DMSO(体积比 4:1)混合溶剂中。

旋涂:将前驱体溶液旋涂于介孔 TiO₂层上,转速 6000 rpm,时间 50 秒。

反溶剂处理:旋涂过程中,在预定时间滴加含 CY 的氯苯(CB)溶液。

退火:先在 150°C 退火 10 分钟,再在 100°C 退火 30 分钟。

环境条件:相对湿度 15-20%,温度 20-25°C(洁净通风橱内)。

Spiro-OmetaD 层制备

溶液组成:Spiro-OmetaD + 离子掺杂剂 FK-209(乙腈溶解,浓度优化)+ 4 - 叔丁基吡啶。

旋涂:转速 4000 rpm,时间 30 秒。

Au 电极制备

方法:热蒸发,厚度 100 nm。

真空条件:基础压力 2×10⁻⁶ Torr。

性能测试条件

测试环境:N₂填充手套箱,室温。

二、p-i-n 结构器件(ITO/PTAA/ 钙钛矿 / PC₆₁BM/ZnO/Ag)

基底清洗与预处理

基底:ITO 导电玻璃。

清洗:依次用洗涤剂、去离子水、丙酮、IPA 超声清洗,随后进行 O₂等离子体处理。

PTAA 层制备

溶液:PTAA(2 mg/mL,溶于 CB)。

旋涂:转速 4000 rpm,时间 60 秒。

钙钛矿层制备

同 n-i-p 结构(前驱体组成、旋涂及退火条件一致)。

电子传输层制备

PC₆₁BM 层:20 mg/mL PC₆₁BM(溶于 CB),旋涂转速 3000 rpm,时间 30 秒。

ZnO 纳米颗粒层:ZnO 纳米颗粒(溶于异丙醇),旋涂转速 4000 rpm,时间 60 秒。

Ag 电极制备

方法:热蒸发,厚度 100 nm(图案化)。

注:

两种结构的制备过程中,仅 CY 的有无为变量,其他步骤(如清洗、旋涂参数、退火条件)严格一致。

图文信息

图 1. CY 的化学结构及 CY 对钙钛矿薄膜可能的局域相位调制机制

图 2.(a)CY 的密度泛函理论(DFT)模拟优化几何结构、偶极矩及静电势分布。(b)对照组和掺入 CY 的钙钛矿太阳能电池(PSCs)的电流 - 电压(J-V)曲线。实线和虚线分别表示反向(R)和正向(F)扫描方向。(c)对照组和掺入 CY 的钙钛矿太阳能电池的 30 个器件的功率转换效率(PCE)统计分布。(d)对照组和掺入 CY 的钙钛矿太阳能电池的外量子效率(EQE)光谱。(e)不同 CY 重量比的钙钛矿的能级图。最高占据分子轨道(HOMO)通过紫外光电子能谱(UPS)测量,最低未占据分子轨道(LUMO)通过从 HOMO 中减去由塔乌图(Tauc plots)确定的光学带隙得到

图 3.(a)对照组和掺入 CY 的钙钛矿薄膜的俯视图(上)和横截面图(下)的扫描电子显微镜(SEM)图像。(b)对照组和掺入 CY 的钙钛矿薄膜的 X 射线衍射(XRD)图谱。(c)纯 CY、对照组钙钛矿和掺入 CY 的钙钛矿薄膜的二维掠入射广角 X 射线散射(GIWAXS)图像,(d)及其相应的线切割谱图。(e)对照组和掺入 CY 的钙钛矿薄膜的高分辨率透射电子显微镜(TEM)图像(红色方框中的放大图像)

图 5. 对照组和掺入 CY 的钙钛矿太阳能电池(PSCs)的归一化功率转换效率(PCE):(a)在未封装情况下暴露于潮湿环境(85% 相对湿度(RH)、25°C、2000 小时)后;(b)在封装情况下置于湿热环境(85% 相对湿度(RH)、85°C、1000 小时)下。(c)对照组和掺入 CY 的钙钛矿薄膜的接触角测量结果。(d)面积为 1.0 cm² 的掺入 CY 的钙钛矿太阳能电池(PSCs)的电流 - 电压(J-V)曲线。在激发波为 510 nm 时,三种薄膜在 770±2 nm 发射波长(图 a 下栏中的谱线)处的时间分辨光致发光(PL)轨迹。每个瞬态过程均标注了重均寿命。实线为动力学轨迹的指数拟合(参见表 S5)。图中还展示了仪器响应函数(IRF)。(c)三种薄膜在监测波长为 756±3 nm、激发波长为 505 nm 时的飞秒瞬态吸收(fs-TA)动力学曲线。(d)三种薄膜在激发波长为 505 nm 时的飞秒瞬态吸收(fs-TA)光谱演化。800 nm 附近的阴影区域是若发生从钙钛矿到 CY 畴的电荷转移时,CY 分子基态漂白(GSB)谱带的预期区域

04

论文信息

论文标题:Local phase-modulated heterostructures for perovskite solar cells with high-efficiency and ultra-stability

发表期刊:《Energy & Environmental Science》

发表时间:2025年7月7日

作者:Yongjoon Cho, Donghwan Koo, Hak-Won Nho, Jeewon Park, Sangjin Yang, Ye-Jin Kim, Seonghun Jeong, Zhe Sun, Gyujeong Jeong, Eunbin Son, Oh-Hoon Kwon, Hyesung Park and Changduk Yang

查看原文(点击底部阅读原文跳转):

https://doi.org/10.1039/D5EE00897B



索比光伏网 https://news.solarbe.com/202507/10/391221.html
责任编辑:wangqing01
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
西交大梁超AM:29.14%! 全钙钛矿叠层电池! 四硫富瓦烯原位双界面调控实现高效Sn-Pb及全钙钛矿电池!来源:钙钛矿人 发布时间:2025-12-26 10:48:30

西安交通大学梁超等人提出一种原位双界面调控策略:在前驱体溶液中引入平面刚性电子给体四硫富瓦烯(TTF)。TTF与锡-铅钙钛矿前驱体组分间的电子给-受相互作用,辅以TTF原位自组装在钙钛矿体相及上下界面的双重富集,协同调控结晶动力学、均化Sn氧化态、促进载流子在体相与双界面处的抽取与输运,并稳固钙钛矿晶格。

34.76%!爱旭两端钙钛矿/异质结叠层电池创新高!来源:钙钛矿工厂 发布时间:2025-12-25 09:46:04

近日,据外媒报道,本在月初由欧洲能源研究联盟联合计划光伏太阳能组织在布鲁塞尔举办的BecomePV2025会议上,爱旭旗下位于德国的研究机构SolarlabAikoEurope介绍了其基于双端 和三端叠层钙钛矿/晶硅叠层太阳能电池研究的最新进展。两端钙钛矿/叠层电池的潜力取决于其与现有硅太阳能组件制造工艺的兼容性。据该公司称,基于爱旭的ABC电池的概念验证三端钙钛矿/晶硅叠层技术的早期测试结果表明,该技术具有更高的能量产出和更低的平准化电力成本。

Sang Il Seok最新AEL:协同偶极工程释放宽禁带钙钛矿中92.8% S-Q 电压极限,用于叠层光伏来源:知光谷 发布时间:2025-12-24 09:20:57

最终,最优WBGPSC实现了VOC=1.29V、JSC=20.0mAcm、FF=82.8%和PCE=21.27%,对应Shockley–Queisser电压极限的92.8%。这些结果表明,协同缺陷钝化与能级调控对于释放WBG钙钛矿的完整电压潜力均至关重要。研究亮点:突破性电压表现:通过协同表面处理,宽禁带钙钛矿电池开路电压达1.29V,实现Shockley–Queisser理论极限的92.8%,为同类器件中最高之一。高效叠层集成:经处理的宽禁带钙钛矿作为顶电池,与硅底电池组成叠层器件,实现26.8%的光电转换效率与1.91V的高开路电压,展示其在实际叠层光伏中的应用潜力。

中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

钧达股份:正积极推进钙钛矿及钙钛矿叠层电池的商业化应用来源:证券时报e公司 发布时间:2025-12-23 16:36:15

钧达股份12月22日在机构线上电话会议表示,公司深耕光伏电池技术研发,在下一代钙钛矿技术领域布局深远,已与仁烁、中科院、苏州大学等单位开展研究,已实现关键突破:钙钛矿叠层电池实验室效率达32.08%,居于行业领先水平;2025年11月完成首片产业化N型+钙钛矿叠层电池下线,攻克底电池结构优化、高效介质钝化膜沉积等核心技术,具备独立开展叠层工艺研发与小规模生产的能力,正积极推进钙钛矿及钙钛矿叠层电池的商业化应用。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

南京工业大学曹久朋&秦天石AEL:调节宽带隙钙钛矿结晶并抑制相位分离制备高性能钙硅叠层器件来源:先进光伏 发布时间:2025-12-23 10:58:16

论文概览宽带隙钙钛矿太阳电池是叠层光伏器件的关键组成部分。然而宽带隙钙钛矿中较高的溴离子含量容易导致复杂的结晶过程和薄膜质量的降低。光稳定性测试中PA改性器件在1000小时连续光照老化后保持90.1%初始效率,远超对照组,证明2D钙钛矿通过结晶调控与相分离抑制实现钙硅叠层器件光电转换效率和长期稳定性的协同突破。这项工作为制备高质量宽带隙钙钛矿以及高性能钙硅叠层太阳能电池提供了重要的材料设计以及工艺路线指导。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。