EMC认证的优质设备;定期进行电磁环境检测;考虑采用模块化微型逆变器替代集中式逆变器。2. 化学物质风险传统晶硅光伏板含有铅、镉等重金属。每块标准组件中约含18克铅,主要用于焊带连接。薄膜电池则可能含有
近日,美国薄膜太阳能企业First Solar在一份监管文件中披露了一则重要交易。2025年6月20日,First Solar公司与一家领先金融机构签订了《税收抵免转让协议》,此举被视为公司
²⁺缺陷形成更强的双位点结合。此外,掺入 CO-BSA
促进了大晶粒尺寸、高质量和低缺陷密度的钙钛矿薄膜的形成。因此,用 CO-BSA 修饰的器件实现了 26.53% 的效率(认证效率为 26.31
PSCs 实现了 26.53% 的认证效率,且封装器件在 1100 小时稳态测试后仍保留 96.1%
效率,归因于薄膜质量提升、缺陷密度降低及疏水性和热稳定性的增强。未来展望1、分子设计优化:基于本
在不同SAMs上的钙钛矿薄膜的PL光谱及(C) TRPL衰减曲线。(D) 通过UPS测试获得的不同ITO/SAM表面与钙钛矿薄膜的能级分布。(E) SAMs在空穴传输界面作用机制示意图
ITO电极表面构筑致密均匀的薄膜仍是一个重大挑战。为了提升SAM作为空穴传输层在电极上的覆盖率,中国科学院化学研究所李永舫院士团队在前期研究基础上,将SAM
MeOF-4PACz中的柔性烷基连接
电极表面形成均匀且致密的薄膜仍是重大挑战,这也成为限制其规模化应用的瓶颈问题。而低覆盖度的HTL会导致电极与活性层间欧姆接触不良,引发大量界面缺陷。为提升以SAMs为HTL的覆盖度,需从分子结构
。3. 电荷传输层(HTL/ETL):需要与柔性基底良好附着的均匀薄膜引入界面层和添加剂显著提高了性能4. 钙钛矿层:分为全无机和杂化两类添加剂工程是提高机械稳定性的关键策略5. 顶电极:蒸镀金
:效率下降:从0.06cm²电池的25.1%效率降至900cm²模块的16.4%效率,主要由于:薄膜不均匀性欧姆损耗死区损耗薄层电阻损耗制造工艺:激光刻划(P1、P2、P3)在柔性基底上更复杂,需精确
方式在NiOx表面构建CoPc中间层:CoPcevap:通过热蒸发方法制备的薄膜;CoPcnws:通过温度梯度物理气相沉积(TG-PVD)方法形成的纳米线结构。通过比较三种HTLs(纯NiOx、NiOx
/CoPcevap、NiOx/CoPcnws)对电池性能的影响,研究者系统评估了双层结构对电荷传输、界面稳定性和器件整体性能的作用机制。关键实验与结果表面形貌与晶体结构:CoPc薄膜平整致密,可有
SnI4的CsPbI3
PQD薄膜的能量级图。图4.
基于氨基化延迟合成的PQD组装薄膜的形态、光学和电子特性。a)未添加和添加SnI4的AFM图像中标记线的高度。b)添加和未添加SnI4的
CsPbI3
PQD薄膜寿命分布的统计结果,以及插入的光致发光衰减映射图像。c)未添加和添加SnI4的CsPbI3
PQD薄膜的光电流映射。d)未添加和添加SnI4的CsPbI3 PQD厚膜的
:d为NBG薄膜中Sn²⁺氧化为Sn⁴⁺的电子损失示意图;e展示Sn²⁺在空气中易氧化及Sn粉还原Sn⁴⁺的现象;f描述钙钛矿晶界钝化与体相结晶调控策略;g对比反溶剂与气体淬火法制备WBG薄膜的截面
SEM图像;h为钙钛矿界面异质结形成示意图;i展示Pb-Sn电池异质结的HAADF-STEM图像及EDX元素分布;j是钙钛矿表面分子钝化机制示意图;k比较对照组与PDA处理WBG薄膜的KPFM图像;l
。研究发现,PDINN 和 CuPc 之间的氢键和 π-π 相互作用可以解决 CuPc 用作 CIL 的溶剂加工性问题。在 PDINN
层中掺入 CuPc 可改善薄膜形态、提高导电性并降低阴极功函数
作为客体材料,突破了二萘嵌苯二酰亚胺CIL的限制,通过与二萘嵌苯二酰亚胺CIL的分子间氢键和π-π相互作用,解决了酞菁铜的醇-溶剂可加工性问题,实现了对二萘嵌苯二酰亚胺CIL的功能化,薄膜形貌、电荷传输