1.晶硅组件的光衰 硼(B)掺杂的P型单晶硅(Cz-直拉法)电池的光衰现象早在1973年已发现,该光衰之后被发现可一定程度恢复的。Jan Schmidt发现了该光衰主要是B-O对引起的并给出
上集成PERC技术存在诸多困难,其中包括光致衰减(LID)以及光致 高温致衰减(LeTID)等效应。根据UNSW和一些其他研究机构的报道,多晶硅PERC 目前存在两种衰减模式:1)快速衰减模式,发
(ALD)技术形成的Al2O3层被用于进行背面钝化。沉积形成的Al2O3层还要进行一次后沉积退火,这一步被集成在随后的背 面SiNx减反射膜(ARC)沉积工艺上,采用的是管式等离子增强化学 气相沉积
摘要:研究了在真空与氮气两种环境中不同的退火温度和退火时间对氮化膜薄膜性能影响,测试了退火后氮化硅薄膜的膜厚、折射率、少子寿命以及电性能参数。结果表明,多晶硅管式PECVD真空退火环境优于氮气,并
摘要:研究了在真空与氮气两种环境中不同的退火温度和退火时间对氮化膜薄膜性能影响,测试了退火后氮化硅薄膜的膜厚、折射率、少子寿命以及电性能参数。结果表明,多晶硅管式PECVD真空退火环境优于氮气,并
常规背场电池(BSF)结构,具有先天局限性,随电池效率提高,局限性越发明显。应用于BSF电池背场金属铝薄膜不能降低背面复合速度,如降至200cm/s以下。达到金属铝背层红外辐射光仅60%-70%能反射
,此工艺采用ASYS印刷机;八是烘干、烧结、光照加退火工艺,此工艺用到Despatch烧结退火炉;九是测试分析,主要仪器为ASYS分选机、BERGER测试机。
3.2造成划伤、污染主要成因
通过实践
太阳电池基体和表面对光生载流子的复合程度,表明了光生载流子的利用率。少子寿命直接影响太阳电池的开路电压、短路电流等电性能参数;若要提高太阳电池的转换效率,必须尽可能提高少子寿命。测试不同电阻率的掺镓硅片
就越多,相应的少子寿命就越短。值得一提的是,相同的基体掺杂浓度,并不意味着有唯一的少子寿命,硅基体的少子寿命还和晶体的生长方式、退火时间和温度、晶体的冷却速度有关。
电池性能
每组实验电池均为400
中B-O对有关,此类衰减可通过降低硅片中氧含量、掺Ga、光照+退火等工艺消除。 多晶PERC的光衰机理更为复杂。目前认为,多晶PERC的光衰与电池的热过程密切相关,因此也称为光照热衰减(Light
实现采用P型提拉法硅片太阳能电池的大规模生产,平均效率超过20.5%。不仅如此,实验结果还显示,同样的技术应用在基于种晶定向凝固法制备得到的高质量多晶硅(多晶硅)片的太阳能电池上,并结合陷光技术后,其
。大量研发团队已经通过实验证明AI2O3薄膜或是AI2O3/SiNx介质叠层能大幅度改善钝化效果,尤其是对于P型硅表面,从而替代常用的高温方法,后者将硅片放置于高温热氧工艺生长设备上进行混合气氛退火以
,单晶PERC的光衰主要与电池中B-O对有关,此类衰减可通过降低硅片中氧含量、掺Ga、光照+退火等工艺消除。
图二 单晶PERC电池的LID衰减和恢复机理
图三 国产PERC电池的光照恢复
关系不大;与少数载流子注入浓度有关;与电池热历史有关。
最新研究显示,吸杂可以抑制衰减(P吸杂比Al吸杂更有效);高温退火及激光快速退火也可以抑制多晶PERC光衰。
图四 多晶PERC电池的光致热衰减
衰减和更优秀的温度系数
P型硅片由“硼”作为主要参杂元素,硅片中的硼氧复合因子会降低电池少子寿命进而出现困扰P-perc电池片的光致衰减现象,近些年我们通过在掺入镓以及退火工艺,光致衰减现象已经得到
很大程度的抑制,但初始光衰依然无法避免,隆基乐叶HI-MO2组件承诺的初始光衰在2%(实际或可做到1%以内)。HIT电池使用的N型硅片以磷作为主要参杂元素,不会出现硼氧复合因子从而从根本上避免了初始光衰