当前位置:首页 > 光伏资讯 > 产业 » 光伏组件生产设备 » 最新新闻 > 正文

管式PECVD如何退火 氮化硅薄膜工艺参数最佳?

来源:摩尔光伏发布时间:2018-10-08 15:19:06

摘要:研究了在真空与氮气两种环境中不同的退火温度和退火时间对氮化膜薄膜性能影响,测试了退火后氮化硅薄膜的膜厚、折射率、少子寿命以及电性能参数。结果表明,多晶硅管式PECVD真空退火环境优于氮气,并确定当退火温度在450℃、退火时间20min时,工艺参数最佳。当温度过高过低均不利于膜厚的增加也不利于形成良好的欧姆接触,且此时光电转换效率较差。折射率的变化却不同,其最大值是在低温下达到的,此时氮气环境更有利于高折射率的获得。此外,还就膜厚和折射率随温度、环境变化的情况进行了详细的讨论。

1引言

氮化硅薄膜制备在太阳能电池生产中起着减少硅片表面的反射、进而增加光的利用率的作用,是晶体硅太阳能电池的重要步骤之一。其关键在于该薄膜不仅减少硅表面反射,还钝化硅材料中大量的杂质和缺陷,并通过改变禁带中能带为价带或导带以提高硅片中的载流子迁移率,延长少子寿命调高光电转化效率的目的[1-3]。因此如何更好的增强镀减反射膜的钝化效果,对于电池片效率的提升有着重要的意义。目前在太阳能光伏领域常用的钝化方法有:氢气氛退火、微波诱导远距等离子氢钝化、等离子增强化学气相沉积即PECVD法三种[4]。通常PECVD法的钝化效果并不理想,因此如何进一步提高氢的钝化效果,以达到提高少子寿命和短路电流从而最终达到提高效率的目的就显得尤为重要。故本文针对PECVD不同温度下真空和氮气两种环境中的退火对电池片的影响进行了研究。

2实验

本实验需在PECVD工艺配方中的沉积步骤后增加一个退火步骤,即对已完成沉积步骤的硅片保持真空度均为1700mtoor,其退火温度分别为350℃,400℃,450℃,500℃温度的条件下、真空和氮气两种不同环境中、不同退火时间内在PECVD管内完成退火工艺。测试其退火热处理前后载流子少子寿命,并观察其对丝网印刷效率等工艺参数的影响。

2.1实验原料及仪器

实验所选硅片导电类型为P型多晶硅片,电阻率为1~3Ω·cm,厚度为(200±20)μm,硅片尺寸为156mm×156mm。氮化硅薄膜制备设备采用德国Centrotherm公司生产的管式低频PECVD设备,利用SE400advPV型椭偏仪测试薄膜的厚度和折射率,利用WT2000设备扫描测试少子寿命,并在多晶电池产线上完成整个太阳能工艺步骤。

2.2实验过程

本实验在真空和氮气氛围下进行,实验使用五组无差别生产片完成。其中一组为对照组即不退火,其余四组为在氮气和真空两种环境下进行的退火时间分别为10min及20min的退火实验,每组各200片。退火使用的硅片经过正常的清洗制绒,扩散制结,湿法切边,然后在PECVD炉内采用高折射率工艺完成退火。下面分别就膜厚、折射率,少子寿命,电学参数四个不同方面随退火温度和工艺退火时间的影响而发生的变化的过程进行研究。

3结果与讨论

3.1膜厚、折射率


图1给出了真空环境中不同的退火温度对膜厚折射率的影响关系图。从图中可看到当退火时间为10min时,随着退火温度的增加,膜厚呈先升高后下降的趋势。原因是当温度较低时,氮化硅薄膜随着温度的升高其生长速率大于沉积速率,故膜生长的较快,并且膜厚在450℃时达到极大值。但温度再升高时,由于沉积速率赶不上氮化硅膜生长速率,且反应粒子活化率较高,薄膜生长不均匀、薄膜结构致密,故膜厚会下降,这同文献[5]研究结果相同,但折射率在图1和图2中均表现出先升高趋势。根据文献[6]可知,温度越高,粒子的迁移率就越大,薄膜就越致密,因此折射率先会呈现一段上升趋势。但若温度持续升高,会导致内部损伤增大、针孔增多,钝化作用变差,薄膜易发生龟裂,折射率故而下降。如图3少子寿命也能说明这一点。这表明膜厚从退火时间上看退火时间和膜厚呈负相关;尽管折射率在两种不同的退火时间均随退火温度的升高均呈现先增大后减小趋势,但氮气退火折射率在400℃达到极大值,比真空的折射率提前50℃到达。说明氮气退火时的折射率的膜结构改变要早于真空环境的退火状态。可能是在氮气气氛下,N2更多的进入薄膜,高温退火后Si-N和N-H键被破坏,H逸出薄膜表面造成体内缺陷增多,产生不饱合键,故氮气环境下的膜厚也在下降。


3.2少子寿命

尽管五组片子是取自晶向一致的同一批片子,但初始的少子寿命并不相同,而我们关心的是镀膜前后少子寿命的变化。因此,这里采用少子寿命的增量来研究不同环境下的少数载流子的变化情况。从图3可看出,不论是真空退火还是氮气氛围退火,少子寿命都会随着温度的升高而增加,但达到一个极大值后,又会下降的一个过程。这主要是因为当低温退火时,有利于离子态的H向硅基表面和体内扩散,钝化硅中的悬挂键,这样使H的活性下降,使得光子在被复合前被收集,因此少子寿命会上升(如图3所示)。而两种环境退火时间越长,少子寿命上升斜率越大,这和文献[6]研究结果相似,这也正是开路电压和短路电流同时升高的原因如表2。同时还发现真空中的退火环境要比氮气氛围少子寿命偏高一些。原因是相比氮气环境,真空环境密度低,离子自由度下降,反应活性差,钝化性能较好,氮气环境对SixHy表面会有不同程度的损伤所致。当温度上升到450℃,少子寿命较不退火时达到一个极大值,之后随着温度的继续升高,少子寿命此时却表现为下降的一个过程。这说明可能是高温处理后,硅态中的H已经过一个饱和值从而逸出表面,使得钝化作用削弱,光子被大量复合,表面复合速率上升[7]。同时此时的开路电压和短路电流也均表现为下降趋势如表1所示。


3.3电学参数

从表2可以看出,不同的环境条件下,随着温度升高效率会有如下变化过程:当温度达到450℃时效率达到最大值,这说明高温烧结使得硅表面缺陷减少,禁带内的复合中心也减少,钝化效果增强故少子寿命升高[8]。


同时可看到此时的开路电压和短路电流也达到最大,说明电池内部载流子的迁移率和导电力较强产生较好的电性能,即硅表面形成良好的欧姆接触,此时的光电转换效率也最强;之后随着温度的升高,效率反而呈下降趋势,开路电压和短路电流总体也随之下降。这说明过高的温度不利于少子寿命的增加,因为过高的温度使得硅体内氢和杂质的键断裂,氢逸散出硅表面,使得表面的晶格缺陷增加,复合中心变多,少子寿命也会下降,氢钝化作用削弱、晶格差异变大、晶格失配加大等缺点,促使欧姆接触性能退化,开路电压和短路电流也会下降,最终电池的电学性能光电转换效率也显著降低。从表2可看出相同的退火环条件时真空环境下的电性能优于氮气,这是由于纯氮气环境下不利于欧姆接触,而真空环境下具备的密度低、反应活性差、钝化性能较好、晶格匹配性良好等优点更利于形成良好的欧姆接触;同时可以看出长的退火时间可以产生较好的电性能参数,因为在相对长的时间里更有利于氢钝化晶界的位错悬挂键等缺陷,减少晶格失配。

4结论

(1)氮化硅的膜厚在真空退火10min、温度在450℃前有一个短暂的上升趋势,其余条件下均随温度升高而下降的结果表明:真空环境中没有氮气参与Si-N和N-H键未被破坏存在,但延长退火时间或在氮气氛围下不利于膜厚的增加。

(2)氮化硅折射率在不同的退火环境和温度下,都呈现一个向下的抛物线形态,且其折射率的抛物线顶点即温度的极大值要早于真空表明:氮气环境中钝化作用削弱,低温下可获得较高的折射率,高温时折射率则偏小。

(3)氮化硅的少子寿命实验表明:两种环境不同时间内低温氢的钝化效果优于高温,真空环境退火要优于氮气环境。同时发现450℃是管式PECVD退火的极值,这表明若要提高退火对氮化硅电学性能的影响,退火温度不要偏离450℃,退火时间20min为佳。

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
魔鬼在细节~氮化硅镀膜工艺参数优化

魔鬼在细节~氮化硅镀膜工艺参数优化

摘要:利用等离子体增强化学气相沉积(PECVD)法沉积给定折射率的氮化硅薄膜,通过正交实验法对衬底温度、NH3流量和射频功率3个对氮化硅薄膜沉积速率影响较大的工艺参数进行全局优化和调整,得到了氮化硅镀膜的最优工艺参

氮化硅薄膜PECVD光伏材料
2018-07-31
光伏电池技术:TOPCon、HJT、钙钛矿、IBC,各自的原理、特点优势以及应用场景

光伏电池技术:TOPCon、HJT、钙钛矿、IBC,各自的原理、特点优势以及应用场景

一、TOPCon(Tunnel Oxide Passivated Contact)技术1,原理与特点:TOPCon技术是一种基于选择性载流子原理的太阳能电池技术。它通过在电池表面添加一层超薄的二氧化硅(1~2nm)和一层掺杂的多晶硅层,形成钝化接触结构

太阳能电池技术
2024-04-17
什么是异质结太阳能电池?具体的工艺流程有哪些?

什么是异质结太阳能电池?具体的工艺流程有哪些?

异质结太阳能电池,全称为晶体硅异质结太阳能电池,是一种结合了晶体硅电池与薄膜电池优势的新型太阳能电池技术。它通过在晶体硅上沉积非晶硅薄膜,实现了光电转化效率提升潜力高、更大的降成本空间、更高的双面率、

异质结太阳能电池
2024-04-16
福建漳州:“十四五”期间光伏项目预计投产300万千瓦以上

福建漳州:“十四五”期间光伏项目预计投产300万千瓦以上

近日,漳州市工业和信息化局 漳州市发展和改革委员会 漳州市生态环境局关于印发漳州市工业领域碳达峰实施方案的通知,通知指出,加快推进我市近海海上风电项目和闽南海上风电基地建设,研制大功率海上风电设备。加快推进集中式光伏和屋顶分布式光伏发电项目建设,加快建设东山光伏基地,提高光伏发电产业产品供给能力。“十四五”期间,光伏发电项目预计新增投产300万千瓦以上,光伏发电产业产品需求量逐年增加。

太阳能电池碳排放分布式光伏
2024-04-15
晶硅电池与薄膜太阳能电池,不同应用场景下的性价比之争

晶硅电池与薄膜太阳能电池,不同应用场景下的性价比之争

随着全球对可再生能源需求的不断增长,太阳能电池作为绿色能源的重要组成部分,正受到前所未有的关注。晶硅电池和薄膜太阳能电池,这两种主流的光伏技术,在不同的应用场景下展现出各自的性价比优势。本文将深入探讨

晶硅电池薄膜太阳能电池
2024-04-15
26.41%!钙钛矿电池再破效率纪录

26.41%!钙钛矿电池再破效率纪录

清华大学易陈谊团队设计并合成了新型多功能空穴传输材料 T2(化学结构如图所示)。该材料可以由低成本的商业原材料高产率的合成,适合大批量生产(已实现单次超过15克的合成),其原材料成本仅为常用spiro-OMeTAD价格的三十分之一。相较于spiro-OMeTAD,T2不仅跟钙钛矿具有更好的能级匹配,还与钙钛矿层的部分局部电子态密度(LDOS)有所重叠,这有利于增强电荷提取能力,降低电压损耗。T2与掺杂剂Li-TFSI具有强结合力,可形成无针孔的HTM层。

钙钛矿太阳能电池光电转换效率
2024-03-25
24.5%!国内再次刷新全钙钛矿叠层组件世界纪录效率

24.5%!国内再次刷新全钙钛矿叠层组件世界纪录效率

近日,南京大学现代工程与应用科学学院谭海仁课题组在大面积全钙钛矿叠层组件领域取得新突破,经国际第三方权威认证机构测试,其稳态光电转换效率高达24.5%,刷新了全钙钛矿叠层组件的世界纪录效率,为全钙钛矿叠层电池的量产和商业化应用奠定了技术基础。相关研究成果于2024年2月23日以“Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules”为题,发表于Science期刊。

全钙钛矿叠层组件光电转换效率太阳能电池
2024-02-26
26.1%光电转换效率的钙钛矿电池诞生

26.1%光电转换效率的钙钛矿电池诞生

近日,中国科学院合肥物质科学研究院固体物理研究所(以下简称固体所)、中国科学院光伏与节能材料重点实验室研究员潘旭、田兴友团队与韩国成均馆大学教授Nam-Gyu Park、华北电力大学教授戴松元合作,首次发现阳离子分布不均匀是影响钙钛矿太阳能电池性能的主要原因,并成功制备出“均匀化”的钙钛矿太阳能电池,获得26.1%的光电转换效率,认证效率为25.8%。相关研究成果日前在线发表于《自然》。

钙钛矿太阳能电池光电转换效率
2024-02-19
有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

有机光伏(OPV)由于独特的机械柔性、可打印性和可调的光吸收特性,将成为物联网(IoT)、智能可穿戴设备上能源供给的绝佳候选者。近年来,由于在新型受体材料上的不断研究和开拓创新,停滞多年的OPV迎来了光电转换效率

有机光伏新型受体材料光电转换效率
2021-05-06
返回索比光伏网首页 回到管式PECVD如何退火 氮化硅薄膜工艺参数最佳?上方
关闭
关闭