当前位置:首页 > 光伏资讯 > 光伏技术 > 正文

有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

来源:PV-Tech发布时间:2021-05-06 13:35:13作者:每日光伏新闻

有机光伏(OPV)由于独特的机械柔性、可打印性和可调的光吸收特性,将成为物联网(IoT)、智能可穿戴设备上能源供给的绝佳候选者。近年来,由于在新型受体材料上的不断研究和开拓创新,停滞多年的OPV迎来了光电转换效率的突飞猛进。在最新一期的Joule上,OPV再获佳绩,一周内刊发了香港科技大学颜河教授、武汉大学闵杰研究员等人的两篇研究成果。

 


 

目前,OPV的聚合物/聚合物共混体系在光电转换效率(PCE)方面仍远远落后于聚合物/小分子受体对应物。为此,武汉大学闵杰研究员、香港科技大学颜河教授等开发设计了一个在近红外区域具有强吸收特性的PY2F-T聚合物受体材料,是长烷基侧链的四氟化Y6衍生物。PY2F-T表现出红移的吸收光谱,光学带隙为1.34 eV,高的吸收系数(1.26×205 cm-1)和高的电子迁移率(7.01×10-4 cm2 V-1 s-1)。当将PY2F-T与宽带隙聚合物供体PM6混合,PM6:PY2F-T器件的PCE为15.0%,是迄今为止报道的最高值之一。此外,研究人员还设计了三元共混的全聚合物OPV,将非氟化的PYT作为第二受体引入到上述的PM6:PY2F-T共混物中。通过优化三元混合物中的受体相负载率和分子堆积,对应器件的Voc,Jsc,FF同时得到提高,获得的PCE达到了惊人的17.25%,这是迄今为止全聚合物OPV的最高PCE值。在可见光和近红外区域中的外部量子效率超过80%。

机理研究表明,引入PYT聚合物受体作为第三种成分在平衡相分离和材料结晶、促进激子分离、抑制载流子复合、增强和平衡电荷载流子迁移率以及三元异质结的快速电荷提取方面起着重要作用,因此获得了较高的FF和Jsc。更重要的是,与相应的二元体系相比,这种三元共混物显示出更少的能量损失,更好的光吸收和光热稳定性。该三元全聚合物体系在最大功率点(MPP)跟踪和连续光照下,以及在室温和高温下均具有出色的长期运行稳定性。该研究工作还强调,PY2F-T是一种有前途的聚合物受体,在光伏性能方面具有极大的优势,这将为全功能聚苯乙烯的潜在应用带来光明的未来。

 


 

相关结果以“Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors”为题于4月23日发表在Joule上。

 


 

此外,香港科技大学颜河教授、西安交通大学马伟教授等在室内OPV上取得了一项重要成果。

研究人员开发了一种名为FCC-Cl的受体-给体-受体(A-D-A)型非富勒烯受体(NFA) 材料,FCC-Cl的重要设计原理是弱的供电子核和适度的吸电子端基的组合,这导致所需的带隙和高结晶度。FCC-Cl分子以氟二环戊噻吩作为核,TIC-Cl作为端基,吸收起始值为725 nm,并具有1.71 eV的光学带隙,适用于室内光伏技术。FCC-Cl受体可以与两种报道的供体聚合物(D18和PM6)结合使用,在阳光直射的条件下效率可达到13%以上,并且这两个系统在2600 K LED的100-2000 lux室内照明下,PCE超过25%。此外,D18:FCC-Cl共混物由于FCC-Cl的高吸收系数和强结晶性,还表现出一些优势:EQE大于85%,匹配的吸收光谱,相对较低的电压损耗和较低的电荷复合,80%的高FF。最终,D18:FCC-Cl器件在500 lux下的PCE达到了28.8%,这是OPV的室内最高PCE之一。此外,研究人员还证明了PM6:FCC-Cl器件的性能对活性层的厚度不敏感。当活性层的厚度从100纳米增加到300纳米时,PM6:FCC-Cl的器件的PCE仅降低了5%(从27.9%降至26.5%)。该室内OPV高的厚度容忍性是卷对卷大面积印刷产品的理想特性。该工作为开发高性能室内OPV器件提供了有效的OPV材料设计指导,并证明了室内OPV实际应用的可行性。

 


 

相关结果以“A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor”为题于4月28日发表在Joule上。

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
吸收量增加66%!创新性设计可有效提高光伏电池发电效率

吸收量增加66%!创新性设计可有效提高光伏电池发电效率

据行业媒体《能源光子学杂志》报道,有机光伏电池的这种创新结构旨在最大限度地提高光吸收和角度覆盖度,这一设计有望重新定义可再生能源技术的发展前景。该研究提供了先进的计算分析和比较基准,以突出这一设计的非凡能力。

有机光伏电池可再生能源
2024-02-20
有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

有机光伏(OPV)由于独特的机械柔性、可打印性和可调的光吸收特性,将成为物联网(IoT)、智能可穿戴设备上能源供给的绝佳候选者。近年来,由于在新型受体材料上的不断研究和开拓创新,停滞多年的OPV迎来了光电转换效率

有机光伏新型受体材料光电转换效率
2021-05-06
英国班戈大学研究员提出一种方法:通过机器学习提高有机光伏(OPV)的稳定性

英国班戈大学研究员提出一种方法:通过机器学习提高有机光伏(OPV)的稳定性

最近,英国班戈大学计算机科学与电子工程学院的TudurWynDavid等研究员提出了一种从有机光伏(OPV)太阳能电池数据中提取信息的机器学习方法。在1850个器件特性、性能和稳定性数据条目组成的数据库的基础上,采用顺序最

有机光伏光电转换效率光伏技术
2020-09-07
南开大学光伏领域获得重要进展

南开大学光伏领域获得重要进展

南开大学化学学院陈永胜教授团队在有机光伏领域获得重要进展,最新成果于11月24日发表于国际著名学术刊物Nature子刊Nature-Photonics(自然-光学,影响因子29.958),并取得9.3%单节器件光伏效率。有机光伏技术是极有前

有机光伏太阳能光伏光伏技术
2019-04-29
有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

有机光伏(OPV)由于独特的机械柔性、可打印性和可调的光吸收特性,将成为物联网(IoT)、智能可穿戴设备上能源供给的绝佳候选者。近年来,由于在新型受体材料上的不断研究和开拓创新,停滞多年的OPV迎来了光电转换效率

有机光伏新型受体材料光电转换效率
2021-05-06
26.41%!钙钛矿电池再破效率纪录

26.41%!钙钛矿电池再破效率纪录

清华大学易陈谊团队设计并合成了新型多功能空穴传输材料 T2(化学结构如图所示)。该材料可以由低成本的商业原材料高产率的合成,适合大批量生产(已实现单次超过15克的合成),其原材料成本仅为常用spiro-OMeTAD价格的三十分之一。相较于spiro-OMeTAD,T2不仅跟钙钛矿具有更好的能级匹配,还与钙钛矿层的部分局部电子态密度(LDOS)有所重叠,这有利于增强电荷提取能力,降低电压损耗。T2与掺杂剂Li-TFSI具有强结合力,可形成无针孔的HTM层。

钙钛矿太阳能电池光电转换效率
2024-03-25
24.5%!国内再次刷新全钙钛矿叠层组件世界纪录效率

24.5%!国内再次刷新全钙钛矿叠层组件世界纪录效率

近日,南京大学现代工程与应用科学学院谭海仁课题组在大面积全钙钛矿叠层组件领域取得新突破,经国际第三方权威认证机构测试,其稳态光电转换效率高达24.5%,刷新了全钙钛矿叠层组件的世界纪录效率,为全钙钛矿叠层电池的量产和商业化应用奠定了技术基础。相关研究成果于2024年2月23日以“Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules”为题,发表于Science期刊。

全钙钛矿叠层组件光电转换效率太阳能电池
2024-02-26
26.1%光电转换效率的钙钛矿电池诞生

26.1%光电转换效率的钙钛矿电池诞生

近日,中国科学院合肥物质科学研究院固体物理研究所(以下简称固体所)、中国科学院光伏与节能材料重点实验室研究员潘旭、田兴友团队与韩国成均馆大学教授Nam-Gyu Park、华北电力大学教授戴松元合作,首次发现阳离子分布不均匀是影响钙钛矿太阳能电池性能的主要原因,并成功制备出“均匀化”的钙钛矿太阳能电池,获得26.1%的光电转换效率,认证效率为25.8%。相关研究成果日前在线发表于《自然》。

钙钛矿太阳能电池光电转换效率
2024-02-19
有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!

有机光伏(OPV)由于独特的机械柔性、可打印性和可调的光吸收特性,将成为物联网(IoT)、智能可穿戴设备上能源供给的绝佳候选者。近年来,由于在新型受体材料上的不断研究和开拓创新,停滞多年的OPV迎来了光电转换效率

有机光伏新型受体材料光电转换效率
2021-05-06
返回索比光伏网首页 回到有机光伏(OPV)光电转换效率突飞猛进,新型受体材料!上方
关闭
关闭