26.41%!钙钛矿电池再破效率纪录

来源:Lilly 能慧发布时间:2024-03-25 09:46:38

清华大学电机系易陈谊团队通过开发新的空穴传输材料结合真空蒸镀钙钛矿薄膜实现了26.41%的钙钛矿太阳能电池世界最高效率纪录。

在光伏技术领域,钙钛矿太阳能电池(PSCs)以其突出的能量转换效率(PCE)和低成本而受到广泛关注。空穴传输材料(HTM)对于PSCs的光电性能和长期稳定性至关重要,其主要作用是提取光生空穴并阻止电子回传,从而抑制电荷复合,同时还可以作为中间层阻挡金属电极与钙钛矿之间的离子相互扩散。

目前应用最广的空穴传输材料2,2′,7,7′-四(N,N-二-p-甲氧基苯胺)-9,9′-螺旋双芴(spiro-OmetaD)虽然具有高效的空穴提取能力,并且与钙钛矿有较好的能级匹配,但是该材料的合成和纯化过程复杂,成本高昂,不利于大规模工业化应用。此外,常用添加剂如双三氟甲烷磺酰亚胺锂(Li-TFSI)和4-叔丁基吡啶的加入,导致spiro-OmetaD薄膜中存在针孔。这些孔洞为钙钛矿中的离子和背电极中的金属原子相互扩散提供了通道,容易导致缺陷形成,从而对器件的长期稳定性产生不利影响。

T2实物照片及其特点以及基于T2制备的钙钛矿电池效率测试曲线

密度泛函理论(DFT)计算Spiro-OmetaD(左排)和T2(右排)分别跟金(上排)和钙钛矿(下排)吸附的差分电荷密度

为解决这些问题,清华大学易陈谊团队设计并合成了新型多功能空穴传输材料 T2(化学结构如图所示)。该材料可以由低成本的商业原材料高产率的合成,适合大批量生产(已实现单次超过15克的合成),其原材料成本仅为常用spiro-OmetaD价格的三十分之一。相较于spiro-OmetaD,T2不仅跟钙钛矿具有更好的能级匹配,还与钙钛矿层的部分局部电子态密度(LDOS)有所重叠,这有利于增强电荷提取能力,降低电压损耗。T2与掺杂剂Li-TFSI具有强结合力,可形成无针孔的HTM层。

此外,T2中的硫原子可与钙钛矿/HTM界面上未配位的铅原子相互作用,不仅可以钝化缺陷,还能抑制离子扩散;同时硫原子还能与HTM/电极界面上的金属原子配位,可有效抑制金属的迁移;有利于提升PSCs的效率和稳定性。

Spiro-OmetaD和T2的化学结构及能级位置和基于T2制备的钙钛矿电池和组件照片

基于spiro-OmetaD和T2制备的钙钛矿太阳能电池的测试结果

通过T2与顺序真空沉积制造的钙钛矿薄膜相结合,研究人员在0.1 cm²的PSCs上实现了26.41%的光电转换效率(认证效率26.21%),并在1.0 cm²孔径面积的PSCs上实现了24.88%的认证效率。此外,研究人员还实现了效率为21.45%的小模组(有效光照面积14.4 cm²)。未经封装的基于T2的器件的最大功率点跟踪(MPPT)的T80为600小时,是spiro-OmetaD基PSCs的4倍。基于T2的PSCs在存储期间(在空气条件下,相对湿度10%,未封装存放2800小时后保持初始PCE的95%)和热处理期间(在60°C下加热1500小时后保持初始PCE的84%)也展现出了良好的长期器件稳定性。

创纪录的效率和良好的稳定性以及低成本和可大规模制备的特点,显示了多功能空穴传输材料在PSCs应用中的巨大潜力。这种多功能空穴传输材料设计策略为未来新材料开发提供了宝贵的经验和指导。同时这也是真空蒸镀钙钛矿电池效率首次超过传统溶液法,展示了该方法的巨大发展潜力。

近日,上述研究成果以“通过多功能空穴传输材料实现高效率稳定钙钛矿太阳能电池”(Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material) 为题发表于国际学术期刊《焦耳》(Joule)。论文共同第一作者是电机系博士生周俊杰、谭理国、刘越和李航;通讯作者是易陈谊;合作者包括清华大学化学系华瑞茂、瑞士苏黎世应用科技大学Wolfgang Tress、意大利费拉拉大学Simone Meloni等。

本研究得到了国家自然科学基金企业创新发展联合基金项目、国家重点研发计划、清华大学自主科研计划和清华大学电机系自主科研项目以及中国博士后基金和清华大学“水木学者”计划项目的支持。


索比光伏网 https://news.solarbe.com/202403/25/377001.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

世界纪录!京东方钙钛矿小电池稳态27.37%!2.88㎡全面积效率20.11%!来源: 发布时间:2025-12-23 14:08:42

在钙钛矿光伏领域,京东方依托自身在玻璃基薄膜加工工艺及封装技术方面的独特优势,快速实现钙钛矿核心能力储备。经国际权威机构福建计量院认证,京东方小电池钙钛矿器件稳态效率最高达27.37%,刷新世界纪录;经TV南德权威认证,中试线2.88㎡刚性钙钛矿组件功率达579W,全面积效率20.11%,单结大面积器件效率行业第一;柔性效率也均创世界纪录,实验线柔性效率21.39%,中试线柔性效率16.6%,功率433w,是业内面积最大、功率最大的柔性组件。

AFM:双重奏效!FAPbBr₃钙钛矿电池开路电压跃升至1.60V,光解水效率突破6.5%来源:知光谷 发布时间:2025-12-23 10:02:56

宽带隙甲脒铅溴钙钛矿太阳能电池在单结吸收体实现无辅助光驱动水分解方面具有潜力。FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。研究亮点:双重钝化协同增效:体相添加FASCN促进晶粒生长,表面处理PDAI钝化界面缺陷,显著抑制非辐射复合,开路电压提升至1.53V。

万度光能:全湿法工艺下钙钛矿模组认证效率突破纪录!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-22 14:24:47

近日,经第三方认证,万度光能全湿法工艺下可印刷介观钙钛矿模组认证效率达26.48%,突破纪录!万度光能致力于介观光电子平台技术产业化,是国家高新技术企业、省级专精特新企业、上市后备“金种子”企业。核心技术以全湿法工艺与三层介孔膜结构为基础,填注钙钛矿吸光材料即完成器件制备。

抑制PEDOT:PSS相分离以提升柔性全钙钛矿叠层太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-12-22 13:45:15

Empa、四川大学、国立清华大学、FluximAG、苏黎世联邦理工学院和斯洛伐克科学院的研究人员证明,超薄PEDOT:PSS中的垂直相分离会产生界面偶极,限制柔性钙钛矿叠层电池性能,而将曲拉通加入PEDOT:PSS可抑制这些偶极子并提升器件效率。柔性全钙钛矿叠层太阳能电池和微型模块。本研究不仅揭示了PEDOT:PSS中界面偶极子作为钙钛矿叠层中的隐藏损耗机制,还提供了一种可扩展的克服方法。

密西根大学龚曦文最新JACS::多层结构解析与再沉积策略实现高效稳定钙钛矿电池来源:先进光伏 发布时间:2025-12-22 09:02:57

研究发现,传统认知中的“单分子层”实则为多层结构,而钙钛矿制备中常用的DMF溶剂可洗脱超过50%的SAM分子,其中近半数直接来自与ITO基底结合的第一层。Figure4展示了再沉积策略对增强SAM稳定性的多重效益及其界面机制。未来,通过进一步优化SAM分子设计以增强层内与层间相互作用,并结合大面积均匀沉积工艺,有望在更复杂的叠层电池结构中实现界面效率与稳定性的协同提升。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。

基于Mxene的钙钛矿太阳能电池实现了25.75%的破纪录效率来源:钙钛矿材料和器件 发布时间:2025-12-15 21:54:20

西班牙的一个研究团队声称利用MXenes或其他二维材料制造了世界上最高效的钙钛矿太阳能电池。该器件依赖Mxene夹层,抑制非辐射复合,并在钙钛矿吸收层与电子传递层界面处提升电荷提取。

带有立体互补设计的钙钛矿-硅叠层太阳能电池效率达到32.3%来源:钙钛矿材料和器件 发布时间:2025-12-15 21:48:44

中国研究人员开发了采用立体互补界面设计的钙钛矿-硅叠层太阳能电池,实现32.12%的认证效率并提升长期稳定性。该策略优化了钙钛矿晶格中的分子适配,提高了电荷传输和器件寿命。