掺镓硅片电阻率对太阳电池性能的研究

来源:太阳能杂志发布时间:2018-09-06 09:31:45

本文将电阻率为0.2~4 Ω•cm 的掺镓硅片分别制备成常规铝背场电池和PERC 电池,并对电池的少子寿命、电性能参数和光致衰减进行测量,研究了电池性能的差别,为掺镓硅片投入工业化生产提供了参考。

实验结果表明:常规铝背场电池的转换效率随着电阻率的增加而增加,电阻率为3~4 Ω•cm 的电池转换效率最高为20.30%;PERC 电池的转换效率随着电阻率的增加而减小,电阻率为0.2~1 Ω•cm 的电池转换效率最高为21.38%。

实验

实验中使用的P 型单晶硅片尺寸为156.75mm×156.75 mm, 面积为244.32 cm2, 厚度为190(±10) μm。实验方案如表1 所示,常规铝背场电池基准组1 和PERC 电池基准组2 都选用目前工业化生产使用的掺硼硅片,电阻率为1~3Ω•cm;常规铝背场电池实验组1~4,选用电阻率依次为0.2~1 Ω•cm、1~2 Ω•cm、2~3Ω•cm、3~4 Ω•cm 的掺镓硅片;PERC 电池实验组5~8,同样选用电阻率依次为0.2~1 Ω•cm、1~2 Ω•cm、2~3 Ω•cm、3~4 Ω•cm 的掺镓硅片;每组样品数量均为400 片。

所有的电池片生产工艺均在常规的单晶硅太阳电池生产线上进行,主要工艺步骤( 其中步骤4)和6) 为PERC 电池独有的工艺) 如下:

1) 去损伤层、制绒:制绒金字塔大小1.5~2.5 μm;

2)PCl3 扩散:高温扩散形成n+ 发射极,方块电阻为90~98 Ω/ □;

3) 刻蚀及去磷硅玻璃层(PSG);

4) 硅片背面沉积Al2O3 和SiNx 钝化膜:Al2O3 薄膜厚度20 nm,SiNx 薄膜厚度130 nm;

5) 硅片正面沉积SiNx 减反射膜:SiNx 薄膜厚度78 nm,折射率2.08;

6) 硅片背面激光开窗:180 根线,线宽为40 μm;

7) 印刷电极;

8) 高温烧结;

9) 测试分选。实验中采用semilab RT-100 设备测量硅片电阻率,四探针法测试扩散后硅片方块电阻,使用semilab WT-1200 设备测试少子寿命,选用BERGER 在线I-V 测试系统,在25 ℃、AM 1.5、1 个标准太阳的条件下测试太阳电池的开路电压、短路电流、填充因子、转换效率等电性能参数。


结果与讨论

少子寿命

少子寿命是太阳电池设计和生产中的一个重要参数。它反映了太阳电池基体和表面对光生载流子的复合程度,表明了光生载流子的利用率。少子寿命直接影响太阳电池的开路电压、短路电流等电性能参数;若要提高太阳电池的转换效率,必须尽可能提高少子寿命。测试不同电阻率的掺镓硅片扩散后和镀完背面Al2O3 和正反面SiNx 后的少子寿命,每种电阻率各随机抽取5 片测试,求出5片的平均值。少子寿命对比如图1所示。


由图1 可知,在0.2~4 Ω•cm 的电阻率范围内,不论是扩散后还是PECVD 钝化后,硅片的电阻率越高,其少子寿命也越高[1]。在太阳电池中,少子寿命往往是由几种不同能级状态的复合中心支配的,硅片的电阻率越低,其基体掺杂浓度越高,硅片内部的杂质和晶格缺陷就越多,相应的少子寿命就越短。值得一提的是,相同的基体掺杂浓度,并不意味着有唯一的少子寿命,硅基体的少子寿命还和晶体的生长方式、退火时间和温度、晶体的冷却速度有关[2]。

电池性能

每组实验电池均为400 片,测试每片电池的电性能,并计算各项参数的平均值。图2a 为不同电阻率的掺镓硅片制成常规铝背场电池的电性能数据,图2b 为不同电阻率的掺镓硅片制成PERC 电池的电性能数据。



开路电压


由图2 可知,在0.2~4 Ω•cm 的电阻率范围内,随着硅片电阻率的增加,相应太阳电池的开路电压会随之减少。太阳电池的开路电压Voc 为:


式中,I0 为太阳电池反向饱和电流;IL 为太阳电池光生电流;n 为理想因子;k 为玻尔兹曼常数;T 为绝对温度;q 为电子电荷。I0 与基区的掺杂浓度成反比[2],即在一定电阻率范围内,硅片的电阻率越大,基区掺杂浓度越低,反向饱和电流越高,开路电压会减小。

短路电流

由图2 可知,在0.2~4 Ω•cm 的电阻率范围内,随着硅片电阻率的增加,相应太阳电池的短路电流会随之增加,常规铝背场电池相比PERC 电池,增加趋势更大。这是因为太阳电池的光生电流密度Jph由光子流密度F(λ) 和光谱响应SR(λ) 决定[2]:


通过Panek P[3] 的研究,测试并对比不同电阻率电池的光谱响应发现,高电阻率硅片制备的太阳电池在600~1100 nm 的长波段光谱响应更好,而在短波段的光谱响应无太大差异。由此可知,高电阻率的硅片对于太阳电池短路电流的贡献主要表现在长波段光谱响应上。

串联电阻

由图2 可知,在0.2~4 Ω•cm 的电阻率范围内,随着硅片电阻率的增加,无论是常规铝背场电池,还是PERC 电池,串联电阻都逐渐增大,填充因子都显著减小。影响电池填充因子的因素有很多,串联电阻对电池的填充因子有着直接影响。填充因子FF表达式为:


式中,Vm为电池最大功率点的电压值;Im为电池最大功率点的电流值。串联电阻对太阳电池I-V 特性的影响如图3[4] 所示,随着串联电阻的增大,Vm和Im逐渐减小,Voc和Isc不发生改变,因此FF 随之减小。


转换效率

由图2 可知,在0.2~4 Ω•cm 的电阻率范围内,随着硅片电阻率的增加,相应常规铝背场太阳电池的转换效率逐渐增大,实验组4( 电阻率3~4 Ω•cm) 的转换效率最高,为20.30%PERC 电池的转换效率逐渐减小,实验组5( 电阻率0.2~1 Ω•cm) 的转换效率最高,为21.38%。另一方面,与目前工业化生产使用的电阻率1 ~3 Ω •cm 的掺硼硅片相比较,若使用掺镓硅片生产,对于常规铝背场电池,其电阻率选择范围应为2~4 Ω•cm;对于PERC 电池,其电阻率选择范围应为0.2~2 Ω•cm。

光致衰减

每组电池分别随机抽取5 片,进行光致衰减前电性能参数测量,然后开始初始光致衰减实验( 光照强度1000 W/m2,时间6 h);完成光致衰减后,测试各片电性能参数,与光致衰减前进行计算,得到初始光致衰减值=( 光衰前转换效率–光致衰减后转换效率)/ 光致衰减前转换效率;求出每组5 片电池初始光致衰减值的平均值,初始光致衰减值对比如图4 所示。由图4 可知,由于硼氧复合体的存在,掺硼单晶硅片制备成的常规铝背场电池和PERC 电池的光致衰减值高达2.21%、4.07%;使用掺镓单晶硅片制备成的太阳电池的光致衰减值远小于掺硼单晶硅片。


结论

实验结果表明:

1) 电阻率为0.2~ 4 Ω •cm 时, 扩散后、PECVD 钝化后硅片少子寿命随电阻率的增加而增加,这是由于硅片电阻率越高其体复合越小。

2) 电阻率为3~4 Ω •cm 的掺镓硅片制备的常规铝背场电池,其转换效率最高,为20.30%。

3) 电阻率为0.2~1 Ω •cm 的掺镓硅片制备的PERC 电池,其转换效率最高,为21.38%。

4) 与目前工业化生产使用的电阻率1~3 Ω•cm的掺硼硅片相比,常规铝背场电池若使用掺镓硅片生产,其电阻率应选择2~4 Ω•cm;PERC 电池若使用掺镓硅片生产,其电阻率应选择0.2~2Ω•cm。

5) 电阻率为0.2~4 Ω •cm 的掺镓硅片无论制备成常规铝背场电池还是PERC 电池,其光致衰减值随着电阻率的增加而降低,且都远小于掺硼硅片制备成的太阳电池。

国家电投集团西安太阳能电力有限公司

■ 宋志成 吴翔* 陈璐 魏凯峰

来源《太阳能》杂志社2018 年 第 7 期( 总第291 期)

索比光伏网 https://news.solarbe.com/201809/06/295568.html

责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

朱宗龙等人EES:金属茂盐作为可调控掺杂剂提升钙钛矿太阳能电池效率来源:知光谷 发布时间:2025-12-09 14:14:09

我们揭示了掺杂机制,并证明此类掺杂剂可将钙钛矿/OSC异质结处的空穴提取效率提升45%。使用金属茂盐掺杂剂的钙钛矿/OSC光活性层,相比使用传统LiTFSI基掺杂剂的薄膜,对湿气诱导降解的耐受性显著增强。显著增强器件界面稳定性与空穴提取金属茂盐掺杂剂及其反应副产物中性二茂铁能有效钝化钙钛矿表面,诱导能带弯曲并形成表面杂化态,从而提升空穴提取效率。

苏州大学袁建宇Nat. Commun.:原位熵配体工程实现高效率量子点太阳能电池来源:知光谷 发布时间:2025-12-09 14:11:57

本文苏州大学袁建宇等人报道了一种高效的原位熵配体工程策略,使用双磷酸酯来提升有机-无机杂化FAPbI量子点的分散性和电荷传输性能。研究亮点:效率突破:认证效率达18.23%通过DEHP熵配体工程,量子点太阳能电池实现18.68%的最高效率,是目前报道的最高效率之一,彰显该策略在提升器件性能方面的强大潜力。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

中节能&宁夏海原县:签署500MW光伏项目开发协议来源:智汇光伏 发布时间:2025-12-09 09:29:18

12月3日,中节能太阳能股份有限公司与宁夏自治区中卫市海原县人民政府签订光伏项目投资框架协议,双方就合作推进建设一期500兆瓦光伏发电项目达成一致意向并展开深入交流。

KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。