表面钝化

表面钝化,索比光伏网为您提供表面钝化相关内容,让您快速了解表面钝化最新资讯信息。关于表面钝化更多相关信息,可关注索比光伏网。

降本提效“三剑客”:金刚线+黑硅+PERC助推高效多晶超越300W来源:华夏能源网 发布时间:2018-11-14 14:23:03

降本提效的空间在哪里?未来的多晶主流趋势又是什么? 金刚线技术在多晶产线上的百分百应用,大幅度降低了多晶生产成本。但是用金刚线切割多晶硅片,采用常规酸制绒无法实现良好的表面织构,甚至无法形成绒面
等人用飞秒激光脉冲在SF6和Cl2气体环境下反复照射硅片表面时,产生一种圆锥形的尖峰状阵列结构。当用肉眼观察时,具有这种结构的硅片呈现黑色,故叫黑硅。 主流黑硅技术有两种:干法制绒的离子反应法(干法

N型高效电池设备国产化进展来源:光伏前沿 发布时间:2018-11-08 09:42:57

,深圳捷佳伟创已经开发出LPCVD设备,在增强电池表面钝化效果及促进多数载流子的传输方面,通过特别的结构设计在同一腔体里集成实现了隧穿氧化层、多晶硅层的沉积及掺杂功能,克服了金属接触区复合较高的问题。与
HJT制绒清洗设备,该设备净产能可以达到6000片/小时以上,远超过进口设备的3000片/小时;在如何获得高度一致性的绒面结构及高洁净度的晶硅表面上,该公司投入大量精力研发。常州捷佳创HJT制绒清洗

不同烧结工艺下 PERC铝浆对电池片电性能影响有啥不同?来源:摩尔光伏 发布时间:2018-10-31 10:57:32

全面印刷铝背场结构, 但PERC 电池背面采用钝化钝化后再通过激光开槽的方法形成局域接触结构, 其钝化膜可以降低接触电阻, 提高转化效率. 大量研究表明, PERC 电池的电性能主要与原材料的种类

硼添加剂对PERC电池性能影响来源:摩尔光伏 发布时间:2018-10-25 16:41:54

效率可达到20.2%。通过SEM 和EDS对PERC电池片的横截面进行微观形貌表征和元素分析,发现硼添加剂对于PERC电池的局部背表面层(LBSF)的厚度产生一定的影响,从而会进一步影响背钝化
摘要:以3种含硼化合物作为添加剂,对背钝化(PERC)太阳能电池铝浆进行了系统地性能研究。其中,Na2B4O710H2O的添加质量分数为1.0%时,填充因子最大可达到78.5%,太阳能电池光电转换

兰州大学新研究提升太阳能电池转换效率来源:中国科学报 发布时间:2018-10-25 13:50:27

兰州大学教授彭尚龙团队采用新型电荷选择性材料改性、光吸收改善、硅纳米陷光结构的构筑、硅表面钝化和硅/金属界面接触电阻降低等策略,提升了太阳能电池转换效率,同时,降低了成本。该成果日前发表于《纳米能源

上海光伏市场简析:15项利好政策、436.45MW光伏项目已获政府扶持来源:光伏头条 发布时间:2018-10-24 15:16:47

光伏行业研究的科研机构较多,具有代表性的有: 上海地区研究机构一览 今年3月,中国科学院上海应用物理研究所高兴宇课题组开发出一种新型钙钛矿薄膜表面钝化工艺,极大减少钙钛矿薄膜特别是其表面

单晶PERC竞速,这些工艺做到极致是最基本要求~来源:摩尔光伏 发布时间:2018-10-24 11:06:25

载流子体寿命与载流子表面寿命的双重影响,SixNy的钝化作用主要体现在体钝化效果上,Al2O3的钝化作用主要体现在表面钝化效果上。由于Al2O3的表面钝化效果只有经过热处理过程才能体现出来,所以能够以

高效光伏电池日益受追捧 业内预测N型电池市占率将升至28%来源:中国证券网 发布时间:2018-10-15 11:31:25

,可大幅提升N型电池转换效率,是N型电池重要发展方向。 TOPCon技术是在电池背面制备一层超薄的可隧穿的氧化层和一层高掺杂的多晶硅薄层,二者共同形成了钝化接触结构,为硅片的背面提供了良好的表面钝化

双面光伏组件:降低发电成本的新兴升级技术来源:PV-Tech 发布时间:2018-10-11 10:26:45

极高,并且可以使双面因子达到70%至80%左右。 新型高效太阳能电池片(如异质结电池片)在某种程度上属于对称设计,其实可以划归为双面技术。此外,硅片表面钝化能够进一步提高转换效率,实现极高的双面因子
,实现渔光互补。 A2)水平安装:适用于需要架高安装的光伏系统,例如安装在农田上方或用作车棚及遮阳蓬等。这种安装方式在多风地区比较有优势。组件本身并不形成连续的表面,彼此之间留有间隙。 A3)垂直安装

管式PECVD如何退火 氮化硅薄膜工艺参数最佳?来源:摩尔光伏 发布时间:2018-10-08 15:19:05

太阳能电池的重要步骤之一。其关键在于该薄膜不仅减少硅表面反射,还钝化硅材料中大量的杂质和缺陷,并通过改变禁带中能带为价带或导带以提高硅片中的载流子迁移率,延长少子寿命调高光电转化效率的目的。因此如何更好的增强
电流同时升高的原因如表2。同时还发现真空中的退火环境要比氮气氛围少子寿命偏高一些。原因是相比氮气环境,真空环境密度低,离子自由度下降,反应活性差,钝化性能较好,氮气环境对SixHy表面会有不同程度的