:多晶硅电池组件和单晶硅电池组件的光电转换效率分别达到16.5%和17%以上;高倍聚光光伏组件光电转换效率达到30%以上;硅基、铜铟镓硒、碲化镉及其他薄膜电池组件的光电转换效率分别达到12%、13%、13
聚光光伏组件光电转换效率不低于28%;硅基、铜铟镓硒、碲化镉及其他薄膜电池组件的光电转换效率分别不低于8%、11%、11%和10%;多晶硅、单晶硅和薄膜电池组件自项目投产运行之日起,一年内衰减率分别
光电转换效率分别不低于15.5%和16%;高倍聚光光伏组件光电转换效率不低于28%;硅基、铜铟镓硒、碲化镉及其他薄膜电池组件的光电转换效率分别不低于8%、11%、11%和10%;多晶硅、单晶硅和
光电转换效率分别达到16.5%和17%以上;高倍聚光光伏组件光电转换效率达到30%以上;硅基、铜铟镓硒、碲化镉及其他薄膜电池组件的光电转换效率分别达到12%、13%、13%和12%以上。
四、做好
市场的应用主流是晶硅组件,包含多晶和单晶。薄膜电池可弯曲性好、弱光发电能力较强,但相比较之下,晶硅组件性价比、能量密度更高及长期运行稳定性更好。所以,晶硅组件也成为本文的主要讨论对象。晶硅组件核心
提高直流电压后才可降低电缆、逆变器等造价。当然创新是无止境的,国外也有厂商把晶硅组件采用了类似碲化镉薄膜组件技术,把组件内部的电池片做成矩阵式结构,如图14所示。但是这种电池片矩阵式结构虽然消除了电池片
光伏发电市场的应用主流是晶硅组件,包含多晶和单晶。薄膜电池可弯曲性好、弱光发电能力较强,但相比较之下,晶硅组件性价比、能量密度更高及长期运行稳定性更好。所以,晶硅组件也成为本文的主要讨论对象。晶硅组件核心
是光伏电池串联必须导致的结果,但是从经济性考虑,组件串联提高直流电压后才可降低电缆、逆变器等造价。
当然创新是无止境的,国外也有厂商把晶硅组件采用了类似碲化镉薄膜组件技术,把组件内部的电池片做成矩阵式
导致多次失误施正荣决策的随意性导致公司多次战略失误,2009年,尚德在四川成都启动碲化镉薄膜电池项目并投入数亿元研发费用,但其在转化率方面一直未能有所突破,最终以失败告终。类似的失败投资比比皆是。另外
薄膜电池,一种探索脱离高纯硅产品作为原材料的技术。“当时我觉得,这是一个发展趋势,很想加入,哪怕没有任何工资。”马丁·格林欣然同意。2001这一年,是施正荣命运的第二个转折点。他回到国内,在内地转悠了
) 效率不低于 97%。
(3) 高倍聚光光伏组件光电转换效率达到 30% 以上 ;
(4) 硅基、铜铟镓硒 (CIGS)、碲化镉 (CdTe) 及其他薄膜电池组件的光电转换效率分别达到 12%、13
,领跑者先进技术产品要求中,多晶硅电池组件和单晶硅电池组件的光电转换效率分别达到 16.5% 和 17% 以上;高倍聚光光伏组件的光电转换效率达到 30% 以上;硅基、铜铟镓硒、碲化镉及其他薄膜 电池组件
薄膜电池的厚度小于3微米。薄膜电池可以制造成柔性器件,在特殊应用领域发挥重要作用。而薄膜电池的代表主要分为硅基薄膜电池、碲化镉 (CdTe)薄膜电池、铜铟镓硒(CIGS)薄膜电池三种类型。其中碲化镉
质量,研发示范推进碲化镉、铜铟镓硒和染料敏化等新型薄膜电池发展,积极开发高倍聚光组件;推进系统控制技术和电力电子技术进步,提高光伏系统效率和可靠性;推进智能技术、微网技术渗透和融合,提高规模电站运营效率
)、碲化镉(CdTe)及其他薄膜电池组件的光电转换效率分别不低于 8%、11%、11% 和 10%;多晶硅、单 晶硅和薄膜电池组件自项目投产运行之日起,一年内衰减率分别不高于 2.5%、3% 和 5