头两年衰减在2%以内的光伏组件基本很少?高达24%的发电损失去哪了?

来源:索比光伏网发布时间:2017-07-03 23:10:40

经常听到光伏部件出现种种创新,比如组件实验室效率24%、量产效率20%,而逆变器转换效率宣称99%。其中组件效率指的是光电转换效率,逆变器转换效率指的是从其直流输入转换为电网交流的工作效率。

大家都知道电站“转换效率”非常关键,因为它直接影响到了发电收益。虽然上面提到的两个核心部件的转换效率已实现了跨越式突破,但还是经常看到光伏电站的统计数据中,从光伏组件直流转换为电网交流的转换效率却低至74~80%。即使逆变器转换效率实际为98%,但是这个差额18~24%去哪里了?

有人可能怀疑是交直流电缆线损、直流汇流箱或交流配电柜损耗所导致,但是这部分损耗一般仅为1~3%左右,还是解释不了这么大的能量损失。其实,站在整体系统的角度考虑,“发电量损失”的根源正是“组件串联的木桶效应所导致的失配损失”,木桶效应是光伏发电损失的罪魁祸首,这也是本文所要讨论的核心问题。

01

光伏组件的伏安特性

当前光伏发电市场的应用主流是晶硅组件,包含多晶和单晶。薄膜电池可弯曲性好、弱光发电能力较强,但相比较之下,晶硅组件性价比、能量密度更高及长期运行稳定性更好。所以,晶硅组件也成为本文的主要讨论对象。晶硅组件核心材料是量大价低的半导体硅,主要由电池片、焊带、背板、边框、及内含旁路二极管的接线盒等构成,如图1所示。

 


 

图1 晶硅光伏组件的外形图

光伏组件内部电池片的等效模型如图2所示,其中Rs为组件串联阻抗、Rsh为组件自身阻抗。光伏电池本质上是一个电流源,只是这个电源流被二极管限定电压至0.5~0.7V。由于晶硅组件内部由多个电池片串联而成,因此组件输出电压大约为30~42V。

 


 

图2 光伏组件内部电池片的等效模型

基于以上电池片等效模型,可以得到以下光伏电流和电压之间的数学函数关系式。根据高等数学的相关知识,从这个函数关系可以清楚看出,这两者之间是一种非线性关系。

 


 

光照强度直接影响组件输出电流,以sunpower黑硅单晶组件为例,如图3所示(https://us.sunpower.com/sites/sunpower/files/media-library/data-sheets/ds-e18-series-225-solar-panel-datasheet.pdf)。光照强度为200w/m2时,组件电流为1.2A;如果光照强度增大至1000w/m2时,组件电流相应增大至6.0A,从而说明组件电流与光照强度成正比,反之亦然。

 


 

图3 光伏组件的伏安特性曲线

由图3也可看到一个有趣并且重要的现象,即在标准测试条件(STC)下,每种光照条件的伏安特性曲线只有一个拐点,这个点就是光伏组件的最大功率点(MPP)。另外,如果STC中的环境温度由25C增大至50C时,同种光照强度下组件电流基本无变化,但组件电压会降低,从而说明环境温度直接影响光伏组件输出电压。

图4清楚说明了晶硅组件的温度特性:相对于25Cº标准测试条件,温度每升高1Cº,组件电流可增大0.067%,组件开路电压降低0.33%,组件最大功率降低0.43%。从而温度对组件电压影响较大,但对组件电流影响不大,基本可以忽略不计,因而温度每升高1Cº,组件MPP电压降低0.43%。这里插个题外话,在组串中选择组件串联的个数时,需根据所选用的组件温度系数,仔细核算低温下组串电压不可超过逆变器的最大输入电压。

 


 

图4 晶硅组件的温度特性

02

组件和组串的内部串联结构

经常听到晶硅组件60片、72片的说法,这个实际讲的是组件内部电池片串联的个数,每个电池片是一个独立的光伏电池单元。如图5所示,每20片或24片光伏电池对应一个子串,光伏组件由3个子串串联而成,每个子串两端反并联一个旁路二极管,旁路二极管可减轻热斑效应。这3个子串的输出线及旁路二极管在组件接线盒中用于电气连接,再通过接线盒引出总的正负两根出线,也就是光伏组件日常附带的直流接头和电缆。

 


 

图4 晶硅组件内部的3个子串及其旁路二极管

以上说明了晶硅组件内部由3个子串串联而成,其实当前光伏发电系统的光伏组串也是由多个组件串联而成,如图5所示。不管是集中式逆变器的直流汇流箱、还是组串式逆变器的直流输入端,都会接入光伏组串,组串一般由20~24个组件串联而成。所以,当前所有光伏发电本质上都是把多个电池片串联使用,以生成光伏组串的直流高压,便于逆变器实现并网交流发电。由初中物理知识可知,电路中不允许多个电流源串联,否则总电流由最小电流的电流源决定。另外在这里偷偷说一句,几个组串并联也存在能量损失,由于线路阻抗的存在,并联电压源的总电压由最低电压的电压源决定。

 


 

图5 多个组件串联的组串式或集中式光伏发电系统

03

光伏组件的木桶效应

参考度娘百科,盛水的木桶是由多块木板箍成的,盛水量也是由这些木板共同决定的。若其中一块木板很短,则此木桶的盛水量就被限制,该短板就成了这个木桶盛水量的“限制因素”(或称“短板效应”),如图6所示。若要使此木桶盛水量增加,只有换掉短板或将其加长才行。

 


 

图6 木桶效应示意图

一个水桶无论有多高,盛水量取决于其中最短的那块木板,人们把这一规律总结为“木桶原理”或“木桶效应”,又称“短板理论”。其核心内容为:一只水桶盛水的多少,并不取决于桶壁上最长的那块木块,而恰恰取决于桶壁上最短的那块。根据这一核心内容,“木桶效应”还有两个推论:其一,只有桶壁上的所有木板都足够高,那水桶才能盛满水。其二,只要这个水桶里有一块不够高度,水桶里的水就不可能是满的。

为了让水桶尽量多装水,必须要找出薄弱环节(短板),并且改进该环节把这个短木板加长。命苦不能怨政府,幸福的家庭是相似的,而不幸的家庭各有各的不幸。很不幸光伏组件串联或内部串联子串都存在木桶效应,甚至可以说木桶效应已充满光伏发电系统中。

由于组件内部串联子串或组串中多个组件串联的本质特性相似,以下以组串为例说明。如图7所示,由3个光伏组件串联构成一个组串,每个组件电流相同时,构成组串的总电流也相同,实际上组串总电流等于每个组件电流。这种工作状况下,每个组件的MPP完全一致,当然这是一种非常理想而实际中并不存在的情形。

 


 

图7 组件MPP一致情况下的组串电气特性

理想很丰满,现实太骨感。实际上,组串中每个组件MPP不可能完全一致,如图8所示的第3个组件(PV3)由于种种原因MPP发生变化,而第1、2个组件(PV1、2)仍然可实现MPP。这种情况下如果这3个组件仍然串联构成一个组串时,组串的总电流不可能达到理想数值,也不可能继续最大功率输出。组串最大输出功率受逆变器的MPPT算法限制,既可能工作于受电流源串联物理原的影响而电流限制在PV3的小MPP电流,也可能工作于PV1、2近似最大功率点而PV3旁路二极管导通的状态(即图8所示)。

 


 

图8 组件MPP不一致情况下的组串电气特性

04

木桶效应导致组件失配

上一节提到,当组串中组件PV3的MPP变小时,组串最大输出功率受逆变器的MPPT算法限制,既可能工作于受电流源串联物理原的影响而电流限制在PV3的MPP,此时的直观状态是组串电压高而功率小;也可能工作于PV1、2近似最大功率点而PV3旁路二极管导通的状态,此时的直观状态是组串电压低而功率大。

为了清楚解释这个问题,先得从光伏逆变器的内部构造说起。所有类型的光伏逆变器的功率回路由组件或组串、输入开关、EMI滤波、逆变电路、交流滤波、及输出开关构成,而信号回路由交直流采样、驱动电路、LCD显示、及控制构成,如图9所示。

 


 

图9 光伏逆变器的内部构造

除了实现直流-交流功率变换和并网控制外,逆变器的关键功能之一是MPPT跟踪,其目的是通过组串电压扰动找到组串的最大功率点。具体控制策略主要使用爬山法、导纳法、神经网络等,当前产品化主要使用爬山法。这些MPPT算法可以寻找到光伏组串的最大功率点,但是无法找到每个组件的最大功率点,下面以图10中两个组件串联为例说明。

 


 

图10 两个组件串联构成的一个组串

这个组串由两个组件串联构成,两个组件分别为I、II,使用第1节的组件等效模型和数学函数关系式,两个组件MPP一致时,组串电压分别与组串功率、电流的函数曲线只有一个转折点,也就是最大功率点;但第I个组件由于种种原因MPP发生变化,而第II个组件仍然可实现MPP时,组串MPP点出现了双峰,如图11所示的A、B点。山峰太多平时看起来很壮观、很漂亮,但是一旦出现在组串上,逆变器的MPPT算法就会搞晕,既可能呆在A点、也可能留恋B点。A点的电压低而功率大,实质上是组件I的旁路二极管导通了,不然组件I将承受反向电压而发生热斑效应而挂掉,这样损失了组件I的输出功率,因为其或多或少还是有输出功率的。而B点的电压高而功率小,实质上是组串电流等于组件I电流,而组件I电流远小于组件II,这样损失了组件II的部分功率。

 


 

图11 两个组件串联构成的组串电气特性

光伏逆变器的常规MPPT算法是从组串的开路电压开始跟踪组串最大功率,因此最有可能的是可以找到B点。近年来国外有些老牌厂商也提出了MPPT的多峰算法,有可能可以找到A点,但是这种多峰算法实际中很少使用。为什么呢?只因为MPPT速度太慢,很可能由于使用这个算法而导致更多的光伏能量损失。

光伏组件MPP变小的直接原因是遮挡,也就是组件的光照强度下降。图12所示为单个电池片遮挡对组件功率影响的实验数据,如果单个电池片的遮挡面积为25%,组件功率损失为8.3%;如果电池片遮挡面积达到93.5%,组件功率损失为87.3%。这个木桶效应的影响非常大,因为组件内部存在60、或72个电池片,结果显示某个电池片被遮挡,光伏组件基本已经没有功率输出,而这个电池遮挡面积仅占整个组件的1.55%!

 


 

图12 单个电池片遮挡对组件功率的影响

图13所示为单个组件遮挡对组串功率影响的实验数据,如果单个组件的遮挡面积为25%,组串功率损失为12.21%。这个木桶效应的影响非常大,因为这个组串由20个组件串联构成,而这个组件遮挡面积仅占整个组串的1%!

 


 

图13 单个组件遮挡对组串功率的影响

木桶效应是光伏电池串联必须导致的结果,但是从经济性考虑,组件串联提高直流电压后才可降低电缆、逆变器等造价。

当然创新是无止境的,国外也有厂商把晶硅组件采用了类似碲化镉薄膜组件技术,把组件内部的电池片做成矩阵式结构,如图14所示。但是这种电池片矩阵式结构虽然消除了电池片级的木桶效应,但是并没有改变组件串联构成组串的悲催现实,这样光伏组串仍然存在木桶效应而导致组件失配的能量损失。除非把组件串联改成并联结构,这样直流母线电压将会很低,可以完全消除传统光伏系统的木桶效应问题,但会导致电缆、逆变器的损耗增大、造价增加。在这里呼吁一下愿意制造这种矩阵式电池片的组件厂,茂硕电气配合研发低压逆变器,我们在深圳等您。

另外,SNEC2017上看到有的组件厂推出了半片技术,有的也推出了每个电池片反向并联旁路二极管技术,半片技术、更多旁路二极管在一定程度上可以减轻木桶效应,只是要评估价格的增加幅度。

 


 

图14 矩阵式电池片结构的组件并联系统

05

导致木桶效应的根本原因

导致木桶效应的根本原因基本上可以分为两类:

一个是因为组件本身原因

另一个是使用组件的外部环境

一般人比较关注光伏组件的衰减和老化及制造过程的离散性,比如很多组件厂承诺头两年衰减不超过2%,10年内不超过10%,25年不超过20%。但是据统计,头两年衰减在2%以内的光伏组件基本很少。

另外,标称功率偏差也是光伏组件的一个重要参数,一般±3%以内是可以接受的,当然大厂做得更好也更有担当,只有正偏差而没负偏差。这个参数也说明,虽然组件的标称参数相同,但实际上输出功率曲线却有差异。但是更重要的是,每个电池片、组件的衰减速度、老化程度及功率偏差不可能完全相同,因此这样的电池片串联构成组件、这样的组件串联构成组串必然存在木桶效应。比如,60个电池片串联时,其中某个电池片提前老化了,那么就会造成整个组件的功率失配损失;20个组件串联时,其中某个组件功率是负偏差,虽然其他组件功率都是正偏差,这样也会造成整个组串的功率失配损失。

与组件本身原因相比较,使用组件的外部环境更加复杂,并且更容易导致木桶效应,而光伏电池串联系统容易发生木桶效应,其直接原因是组件内部每个电池片、或组串内部每个组件的光照不均匀导致的输出功率不相同。如图15所示,存在太多的外部环境容易使电池片、或组件之间的光照不均匀,比如屋顶发电的女儿墙对电池片、组件的部分遮挡;地面电站前后排组串的阴影;光伏组件表面的灰尘、积雪、脏污不一致;地面电站组件旁边的杂草;光伏组件的倾角不一致;组件老化不均匀;同一处光伏电站所使用的组件温度还有可能不一样;当然天上的朵朵白云也导致组件光照不一致。

 


 

图15 导致木桶效应的外部环境

因此,导致木桶效应的部分原因是可以解决的,比如阴影、杂草遮挡等,甚至现在组件出厂时还可以分级筛选,把性能相近的组件归到同一组串,但是这种措施没考虑到几年后组件的不均匀老化问题。但是,更多导致木桶效应的原因却难以解决,比如人们还控制不了云彩,也不可能让灰尘和积雪完全一致,更关键的是无法达到相同的组件衰减率。

06

总结

为什么一再旗帜鲜明地不看好当前1500Vdc光伏系统呢,原因是没改变组件内部的电池片串联结构,主要是1500Vdc组串中组件串联的数量更多了,进一步提高了木桶效应出现的机率,并且组串MPP点出现山峰更多,从而木桶效应变得更加严重。

汇总全文内容,其实归根结底就是以下几句话:

1)、光伏组件由多个电池片串联构成,组件内部存在木桶效应;

2)、光伏组串由多个组件串联构成,组串内部存在木桶效应;

3)、造成光伏木桶效的根因部分容易处理,而更多的外部因素无法解决;

4)、矩阵化电池片的组件并联技术可消除木桶效应,但需评估效率和成本;

5)、电池半片、更多旁路二极管可减轻木桶效应,但需评估成本和工艺;

木桶效应所导致的组件失配会造成发电收益降低,并且降低的幅度高达18~24%。本来组件的光电转换效率已经够低了,就这么低的直流电力还不能实现全部的并网发电,即使逆变器转换效率高达98、99%也是枉然。

从根本上说,木桶效应的本质是低的组件利用率,而组件利用率既不是组件厂的技术范畴,传统逆变器公司也是无能为力,可以说还是一个空白区。为了提高组件利用率、消除木桶效率,优化器、微逆是其中切实可行的改进措施,并且这个是咱们电力电子人可以做的事情,也是本系列后续重点讨论的内容。

 FR:胡炎申 索比光伏网

索比光伏网 https://news.solarbe.com/201707/03/115781.html

责任编辑:carol
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
正泰电器:预计2026年向正泰新能采购不超过35亿元光伏组件来源:索比光伏网 发布时间:2025-12-09 20:25:33

12月9日,正泰电器发布公告,公司第十届董事会第九次会议审议通过了《关于2026年度预计向关联方采购光伏组件的议案》,预计2026年度公司及控股子公司向正泰新能科技股份有限公司及其控股子公司采购光伏组件交易金额合计不超过35亿元。因正泰新能为公司控股股东正泰集团股份有限公司的控股子公司,系公司关联方,因此上述事项构成关联交易。

贝盛绿能成功通过IEC TS 63209-1 :2021光伏组件加严测试性能认证来源:贝盛绿能 发布时间:2025-12-09 16:54:32

近日,全球领先的光伏制造商及新能源解决方案提供商——浙江贝盛绿能科技有限公司(以下简称“贝盛绿能”)宣布,其核心N型TOPCon光伏组件成功通过IEC TS 63209-1:2021国际标准加严测试认证,该认证由国际权威检测机构TÜV莱茵颁发。此次认证的获得,标志着贝盛绿能光伏组件在长期可靠性与极端环境适应性方面达到国际顶尖水平,为其深耕全球高端市场奠定了坚实基础。

这家企业申请异质结/钙钛矿叠层发明专利来源:摩尔光伏 发布时间:2025-12-08 16:22:16

近日,国家知识产权局信息显示,中建材浚鑫科技有限公司申请一项名为“一种超高效异质结与钙钛矿叠层光伏组件”发明专利,申请公布号:CN121038506A,申请日期为2025年8月,申请公布日2025年11月28日。

印度: 光伏组件产能已严重供需失衡来源:索比光伏网 发布时间:2025-12-08 15:34:59

近日,印度新能源与可再生能源部发布政策导向,要求金融机构对新增独立太阳能组件产能融资采取谨慎态度,同时将资金支持重点转向硅锭、硅片、多晶硅等上游环节及关键辅助部件领域,以破解国内光伏产业链“下游过剩、上游空白”的结构性失衡难题。该协会此前致函MNRE指出,印度组件产能已接近国内年需求的4倍,截至11月纳入“获批型号与制造商名单”的组件产能达122吉瓦,而同期电池产能仅18.48吉瓦。

巴基斯坦首个光伏组件专业测试实验室建成来源:索比光伏网 发布时间:2025-12-08 10:01:55

12月6日,巴基斯坦首个光伏组件专业测试实验室“巴韩光伏组件及相关设备测试实验室”正式揭牌。该实验室由巴基斯坦科学技术部与韩国国际协力团联合打造,将填补巴国光伏组件专业检测领域空白,为其清洁能源转型与产业升级提供关键支撑。该局相关负责人表示,实验室投用后将对每批进口光伏组件实施随机抽样检测,依托专业检测能力筑牢本土市场质量防线。

钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

中信博蔡浩:中国光伏今天的全球竞争力,依托于产业链的集体崛起来源:资管中国 发布时间:2025-12-08 08:59:07

中信博董事长兼总经理蔡浩日前做客《沪市汇·硬科硬客》第二季第6期节目“供应链‘再出海’”时表示,中国光伏产业能有今天的全球竞争力,靠的是整个产业链的集体崛起。中信博在2025年中报中称。中国光伏产业能有今天的全球竞争力,靠的是整个产业链的集体崛起。蔡浩认为,客户选择的不仅仅是中信博的支架,更是背后整个中国光伏产业的强大生态和信誉背书。

2026年一季度交付!特斯拉宣布在美国投产新款光伏组件来源:索比光伏网 发布时间:2025-12-08 08:53:17

近日,特斯拉在举行第三季度财报电话会议上宣布,已在纽约布法罗超级工厂启动自研新款户用太阳能电池板的生产,首批产品预计于2026年第一季度交付用户。值得注意的是,特斯拉光伏组件的“自研”标签背后存在代工历史。目前尚无法确认该参数对应的是此次宣布的自研新款组件,还是在售贴牌产品的升级版本,特斯拉未对此作出进一步说明。此次生产启动正值特斯拉光伏业务恢复期。

华能清洁院:聚焦海上风光融合、光伏制氢、海洋牧场的深度融合来源:索比光伏网 发布时间:2025-12-05 14:39:39

针对这些痛点,华能清能院依托山东半岛南4#海上风电场,打造了“黄海一号”漂浮式光伏平台,形成五大关键技术体系。2024年10月1日,“黄海一号”已运输安装至华能山东半岛南4号海上风电场内,打造国内首个深远海风光同场、风光共结构的海上光伏实证基地,成为海上光伏实证研究的重要基地。展望未来,毕成表示,海上光伏将重点推进与海上风电的融合开发,结合制氢、水下养殖等多业态模式降低成本。

科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

中国光伏行业协会海上光伏专委会秘书长江华:海上光伏是“生态共荣”的事业来源:索比光伏网 发布时间:2025-12-05 10:49:30

12月5日,由中国能源研究会新能源智能制造与应用技术专委会、中国电力工程顾问集团西北电力设计院、福建永福电力设计股份有限公司、索比光伏网联合主办的2025第三届海上光伏大会在福建隆重召开。中国光伏行业协会副秘书长、海上光伏专委会秘书长江华出席大会并致开场辞,系统阐述海上光伏发展现状、挑战与前景,呼吁行业凝聚合力、协同创新,推动海上光伏成为绿色生产力的重要载体。