。半片组件本质上是源自划片工艺,只是把大电池片进行垂直于主栅线的划片而已,为什么能提高组件整体功率呢?
光伏组件在工作过程中,电池片上细栅线、主栅线、焊带、汇流条都是电流的传输通道。常规光伏电池片产生的电流
。为了规避常规扁平焊带带来的阴影遮挡问题,MBB多主栅设计一般采用圆形的铜丝来作为焊带输送电流,铜丝直径约0.4mm。
在实验室测试时候,光是垂直照射到铜丝上面,因为表面是圆形,很大一部分的光线从
物理焊接一体的工艺。导电胶的导电率指标和常规的焊带焊接完全不在一个水平,相差两个数量级。而且随着时间的推移,胶水受到环境的侵蚀(湿气、应力、温度、形变等疲劳),到底会保持多少的粘结力量这是个未知数
物理焊接一体的工艺。导电胶的导电率指标和常规的焊带焊接完全不在一个水平,相差两个数量级。而且随着时间的推移,胶水受到环境的侵蚀(湿气、应力、温度、形变等疲劳),到底会保持多少的粘结力量这是个未知数
达到415W,组件转换效率最高达20.4%。 从2015年起,天合光能就开始将多主栅作为储备技术展开研究。先后合作开发了国内第一代圆形焊带、国内第一代MBB电池串焊设备,并率先解决了圆形焊带的焊接
2015年起,天合光能就开始将多主栅作为储备技术展开研究,先后合作开发国内第一代圆形焊带、国内第一代MBB电池串焊设备,并率先解决圆形焊带的焊接工艺难点,包括圆焊带防偏移关键技术、144点弹性独立压紧
带焊接,减少遮光面积和线损,节省空间,比常规60型组件多封装13%的电池片,功率提升超20W以上,显著高于半片、MBB等其他技术。但成本与传统组件相比有待进一步下降。
根据苏州晟成公众号披露,目前
主栅(MBB)、叠瓦等技术已经实现产业化,多主栅叠瓦、三角焊带拼片等技术还处于实验室水平。在已经实现产业化的技术中,叠瓦技术平均可增加光伏组件功率20W以上,明显领先于其他新型封装技术。
叠瓦技术
。 降本增效新贵,叠瓦大幕开启 叠瓦技术将电池片切片用导电胶互联,省去焊带焊接,减少遮光面积和线损,节省空间,比常规60型组件多封装13%的电池片,功率提升超20W以上,显著高于半片、MBB等其他
对策。
造成隐裂的原因主要有两个:一个是焊接问题,另一个是人工搬运或传送带震动因素。秦楠介绍说,一个多月的时间里,他和同事拿着震动仪,在传送带上一个点一个点地寻找异常点,解决问题。他还改造了焊机的接触
结构,重新设置焊接参数,最终使成品隐裂率从30%骤降至1%以内,大幅提高了客户产品订单出货率。很多客户赞叹:晶澳产品,真是名不虚传。
针对组件半成品虚焊返修率过高、材料浪费以及工人劳动强度大而导致
优势如前文所述,但异质结技术若要实现大规模发展也具有一定难点。一方面,异质结的制造成本相对较高,另一方面异质结采用常规封装技术封装时,焊带拉力的稳定性难以控制,且异质结不能采取传统晶体硅电池的高温焊接等
,栅线和焊带设计需要进一步优化。
在今年日本展会上,也看到多主栅组件的出现越来越普遍,其中不少厂家就选择了搭配半片技术,如正泰、韩华Q-Cells、航天、中来、尚德及天合等。展出的多主栅组件大多使用
的性价比方案,预计2020年才有机会进入发展的元年。
据英利首席技术官宋登元介绍,目前由于采用热焊接方式与现有产线高度兼容,且投资相对较少,技术成熟度较高,使得大部分都选用国产多主栅热焊接设备方案