表面无主栅线,以导电箔取代焊带,不仅提高了组件的受光面积,而且无焊接工艺规避焊接应力以及铅的使用,组件不仅性能优渥而且更加环保,获得了行业一致认可。 日托光伏作为把MWT技术从实验室推向生产线的先导
工艺。 据晶科能源有限公司研发总监郭志球介绍:叠焊顾名思义,是指将相邻电池片部分重叠,采用传统焊带焊接的方式将电池片进行链接,形成一个串联电路。这种技术消除了传统焊接时产生的电池片间距,最大化利用
MWT 电池正负电极点均分布于背表面,且不在一条直 线上,常规焊带焊接互联方式无法适用,因此,MWT 组件采用金属箔作为导电背板,在金属箔上进行电路设计,每 片电池片通过导电胶和金属箔电路互联形成完整
,Tiger系列组件在产业链中有着极高的兼容性。 晶科能源产品研发部总监郭志球介绍道:Tiger系列组件所采用的叠焊技术,通过在传统焊带焊接工艺的基础上实现电池片的叠加,缩小电池片间距最大化利用面积从而实现
层压过程中使用特制的EVA/POE,高温下有效填充重叠区域电池片与焊带之间的缝隙,给电池片提供缓冲作用,保障组件可靠性。 作为一种新的电池焊接工艺,叠焊技术是在传统焊带焊接工艺的基础上实现电池片的叠加
的模式,通过增加电池片的主栅数来起到降低内部损耗,增加组件功率的效果;通过升级的圆丝焊带,有效对斜射光进行二次反射,大幅提升IAM。在众多的栅线数目选择中,晶科通过多次试验,结果如图2所示,组件功率
关键技术点有三个:
1. 重叠区焊带减薄:Tiger组件使用了柔性的圆丝焊带,在重叠区域对焊带进行压扁设计,整体厚度低于非重叠区域和常规组件。
2. 重叠区焊带整形:整形后的焊带形状为变形的 Z 字形
示意图 ②拼片组件技术:通过三角焊带增加光利用和增加电池排布密度,达到组件效率最大化。它将组件的片距大幅缩小至0~0.5mm,减小片间距焊带带来的电阻,将由缩小片距而省出来的空间,多放置电池片,实现
间距是2毫米,并没有采用小间距或者叠片焊接的方式,这与东方日升相对保守的可靠性控制体系相关,日升对于小间距和叠焊技术中二次压扁焊带的可靠性风险持保守态度,需要更多研究分析。同时由于电池片间的光学反射作用
转换效率;9主栅设计,降低了电池间的焊接内应力,更低的隐裂率,更高的组件可靠性;圆形焊带可减少遮光面积,将光有效反射到电池上,提高组件功率。
|30MW日本占小牧地面电站|
日本
特性;优越的温度特性,组件功率温度系数-0.35%/℃;抗PID衰减技术叠加双玻结构,适用于严苛环境和极端天气地理条件。
|叠焊组件|
采用9BB的PERC电池和叠焊技术;更高的
,随后将串焊、层叠过程做调整;在电池端,半片技术仅需调整电池版图。 2.1 串焊 用焊带将各个电池片正反面焊接起来,组成串联的电池串。 主要工艺控制:虚焊、过焊、裂片和焊接拉力