。通过将栅线密化,增加主栅根数,可以减小发射区横向电阻,此外在增加栅线横截面积的同时减小栅线宽度(即减小栅线的宽度,同时增加栅线高度),可以减小导线电阻。
图二 常规工艺栅线细化的技术途径
多主
产能需求。目前海泰新能生产的单晶PERC或单晶SE电池+多主栅可以实现300-310W。
设备方面,多主栅技术在电池产线上只需改变印刷网版即可,在组件产线上需采用全新的串焊机,后续叠层、层压等步骤与
来源:摩尔光伏
摘要:优化设计太阳电池的电极图形可以获得高的光电转换效率。文中以实例介绍了晶体硅太阳电池上丝网印刷电极的优化设计,讨论了电池的功率损耗与扩散薄层电阻及细栅线宽度的关系,在原始设计的
(11)要想得到最佳栅线设计可通过简单的迭代法实现。方法为:给定一个工艺上可实现的值,对式(11)用实验值代入求得一个S0值,取S1=S0/2为初试值,然后按照牛顿迭代法进行迭代计算。
这个过程
发展低成本、连续卷轴印刷工艺。对于印刷薄膜光伏而言,可印刷界面材料是实现高效印刷光伏的关键材料之一。 在有机太阳能电池中常用的溶液法界面材料为金属氧化物纳米材料和聚合物/小分子类有机界面层材料。这两类
阵列抛物或碟形镜面收集太阳热能,通过换热装置提供蒸汽,结合传统汽轮发电机的工艺,从而达到发电目的的一种发电方式。相比光伏发电,太阳能光热发电不仅可避免昂贵的硅晶光电转换工艺大大降低太阳能发电的成本,还可
、输配电、重工、轨道交通、机电一体化、机床、环保、电梯、印刷机械等多个产业集团,自上世纪九十年代以来,销售收入始终位居全国装备制造业第一位。目前,高效清洁能源、新能源装备是上海电气的核心业务,能源装备
出光伏电池片18开口网版印刷工艺,并实现初步量产。该超细线印刷工艺也是目前全球两次印刷工艺路线的首次突破。 协鑫集成再度获评DNVGL顶级组件制造商 凭借在组件制造和产品可靠性方面的出色表现,协鑫集成被
效率已经达到22%以上。预计在未来10年内,晶硅太阳能电池仍将占据主导地位。随着光伏产业的发展,晶硅太阳能电池技术呈快速发展趋势。晶硅太阳能电池技术主要集中在2大方向:一是在现有电池结构和工艺的基础上,在
一个或多个工序中引入新的生产工艺(如优化的表面钝化技术、选择性发射极技术、优化的表面织构化技术、点接触技术及3D打印电极技术等)来提高电池转换效率;二是改变现有的电池结构、工艺流程或材料(如HIT电池
晶体硅太阳能电池制造工艺中,使用成本昂贵的蒸镀工艺制作电极,如采用Ti/Pa/Ag结构来降低接触电阻,增加与硅底的附着力。而在实际工业生产中,为降低生产成本,常采用导电性能优越的银浆料,用丝网印刷的
摘要:丝网印刷工艺中借助悬浮网板印刷起始边的抬头功能,保证浆料脱离角度的一致性并提高网布脱离速度,进而提升电池片印刷质量,有效降低网板粘片率;通过悬浮网板印刷终止边的下探功能,降低网布形变量,有效
要4-5微米。 金属化工艺 对于PERC电池,其金属化工艺仍可采用丝网印刷工艺,但由于PERC电池的背面结构发生改变,对导电浆料的性能提出了不同于常规电池浆料的要求。 在背面局部金属化阶段,会遇到铝
载流子复合,提高表面钝化效果;
(3)增强电池短波光谱响应,提高短路电流和开路电压。
目前选择性发射极的主要实现工艺有氧化物掩膜法、丝网印刷硅墨水法、离子注入法和激光掺杂法等,其中激光PSG掺杂法由于
高方阻的均匀性、轻重掺杂区方块电阻匹配和印刷正电极的精确对位等问题,本文主要对前两个问题相关工艺进行研究。
2.实验过程
2.1实验原材料
实验采用156.75156.75mm的单晶硅片