15栅来了?你不得不了解的栅线优化设计的那些事儿

来源:摩尔光伏发布时间:2018-07-30 14:11:24

来源:摩尔光伏

摘要:优化设计太阳电池的电极图形可以获得高的光电转换效率。文中以实例介绍了晶体硅太阳电池上丝网印刷电极的优化设计,讨论了电池的功率损耗与扩散薄层电阻及细栅线宽度的关系,在原始设计的基础上设计出了理想尺寸的太阳电池栅线。经过优化改进的太阳电池可降低由电极设计引起的总功率损失,并且提高了电池 片的光电转化效率。

对于太阳能电池来说,为了获得尽可能高的光电转化效率,对电池的结构必须进行详细设计。金属栅线负责把电池体内的光生电流引到电池外部。太阳电池栅线的最优设计是以电池总功率损耗最小为依据的。栅线结构设计得好,将使电池的串联电阻最小,从而使功率损耗最小、输出功率最大,这对大面积功率输出的单体太阳能电池尤为重要。

1栅线设计原理

与上电极有关的功率损失机理包括由电池顶部扩散层的横向电流所引起的损耗、各金属线的串联电阻以及这些金属线与半导体之间的接触电阻引起的损耗。另外,由于电池被这些金属栅线遮蔽所引起的遮光损失直接降低光电流输出。以下太阳电池栅线的最优设计公式可参阅文献[1]和[2]。选取如图1所示的对称布置的上电极的一个单元来研究收集光生载流子过程中带来的各种损失。


在电池栅线设计中,扩散薄层的横向电流损失是主要的。薄层电阻的重要性之一,在于它决定了顶电极栅线之间的理想间隔。顶层横向电流总相对功率损耗由式(1)给出


其中,Jmp和Vmp分别为最大功率点的电流密度和电压,R为这一层的薄层电阻,Js是两条细栅线的间隔距离。

细栅线电阻相对功率损耗为


主栅线电阻相对功率损耗为


如果电极各部分是线性的逐渐变细的,则m值为4;如果宽度是均匀的,则m值为3。是电极的细栅线的金属层的薄层电阻,昆是主栅线的薄层电阻,这里直接考虑焊带电阻,公式为


由式(2)~式(5)可知,选用低体电阻率的金属材料,并且增加主栅线和细栅线的厚度,可适当的降低Rf和Rb。

细栅线遮光相对功率损耗为


主栅线遮光相对功率损耗为


忽略直接由半导体到主栅线的电流,接触电阻损耗仅仅是由于细栅线所引起,这部分功率损耗一般近似为


其中,Rc是接触电阻率。

使这些损失最小的主栅最佳尺寸可通过将式(3)和式(5)相加,然后对WB求导而求出。结果是当主栅线的电阻损耗等于遮光损失时,其尺寸为最佳。公式为


主栅线引起的功率损耗最小值为


对于细栅线的最佳尺寸,考虑当栅线的间距变得非常小以致横向电流损耗可忽略不计,即S→0时,细栅线设计出现最佳值。公式为


细栅线引起的功率损耗最小值为


对于式(11)要想得到最佳栅线设计可通过简单的迭代法实现。方法为:给定一个工艺上可实现的值,对式(11)用实验值代入求得一个S0值,取S1=S0/2为初试值,然后按照牛顿迭代法进行迭代计算。


这个过程将收敛到一个不变的值上,这个值即为最佳栅线设计。

2栅线设计优化实例

设计一个边长为125mm、对角为165mm的n+p型单晶硅太阳电池的上电极。在这里把4个角近似为直角,栅线距离硅片边缘1mm。采用丝网印刷,电极材料为银浆,其体电阻率为3.0μΩ.cm,焊带体电阻率为2.0μΩ.cm。在AM1.5光谱下,电池的最大功率点电压Vmp为0.525V,电流密度Jmp大约为34mA/cm2。细栅线厚度为30μm,焊好后主栅部分厚度为150μm。栅线和半导体之间的的接触电阻率为2.8μΩ.cm。则根据式(4)和式(5)细栅线和主栅线的薄层电阻分别为


以上结果显示Rf>Rb,最好选择长主栅线、短细栅线的电极设计方案。电池可分为4个单电池,每个单元长A=123mm,B=30.75mm。


由式(9)计算出每个单电池等宽度主栅线(m=3)的最佳宽度为


因为实际主栅线是2个单元电池公用,所以主栅线的实际最佳宽度为0.127cm。由式(10)可得出上电极主栅部分总功率损失为

 

考虑工艺的因素,焊接好后主栅控制在140~170μm之间,即把Rb控制在0.000118~0.000143Ω/口之间,上电极主栅部分总功率损失可控制在4.32%以下。

工艺上可实现的Wf值取为90μm,代入式(11)求出s0值,扩散薄层电阻控制在50Ω/口。由式(13)迭代法收敛到一个不变的值上,得到此工艺下的最佳栅线间距和各功率损耗如表1所示。考虑工艺上的因素,细栅线的厚度控制在30~40μm之间,即把Rf控制在0.00075~0.001Ω/口之间,细栅线电阻相对功率损耗Rf可控制在0.53%以下。

由于实际生产中预先设计的栅线尺寸与理想尺寸会有一定的偏差,需要在原始设计的基础上进行调整以得到较理想的栅线。将工艺上可实现的值分别取为60、70、80、90和100μm,通过计算和分析得到不同的扩散薄层电阻下的最佳细栅线间距S值,如图2所示。


当Wf值取为90μm时,改变Rs,此时各种功率损耗与S的关系如图3所示。当Rs取为50Ω/口时,改变Wf,此时各种功率损耗与S的关系如图4所示。

由图2和图3可知,在细栅线宽度一定的情况下,随着扩散薄层电阻减小,最佳细栅线间距增大,此时Psf和Ptl减小,Prf和Pcf虽增大,但影响程度较小,由图5可知,电极引起的总的功率损耗P也越小。


由图2和图4可知,在扩散薄层电阻一定的情况下,随着细栅线宽度减小,最佳细栅线间距减小,此时Psf和Ptl减小,Prf和Pcf虽增大,但影响程度较小,由图5可知,由电极引起的总的功率损耗P也越小。


3讨论

根据以上数据分析,低的扩散薄层电阻使所需的最佳细栅线间距增大,主要减少了顶层横向电流总相对功率损耗和细栅线遮光相对功率损耗,从而减少了电极引起的总的功率损耗。但是高的掺杂浓度会使电池片表面容易形成死层,使蓝光响应变差。而高方阻具有较低的表面杂质浓度,可有效降低表面的杂质复合中心,提高表面少子的存活率,同时增加短波的响应,有效的增加了短路电流和开路电压,达到提高效率的目的。但是与此同时表面薄层电阻明显增加,减少了最佳细栅线间距,增加了电极引起的总的功率损耗,降低了填充因子。要使最终的效率有所提高,就需要开路电压、短路电流的提高大于填充因子的降低。

工艺上细栅线宽度的减小可以使所需的最佳细栅线间距减小,可以很大程度上减少顶层横向电流总相对功率损耗和细栅线遮光相对功率损耗,从而减少电极引起的总的功率损耗。为了提高方阻的同时,降低由于电极引起的功率损耗,就需要增加细栅线条数、减小细栅线宽度。与此同时选用低体电阻率的金属材料,并且增加主栅线和细栅线的厚度,可适当的降低主栅线部分总功率损失和细栅线电阻相对功率损耗,从而减少电极引起的总的功率损耗。因此为了减少由电极设计所引起的功率损失的同时,提高光电转换效率,栅线设计的优化方向选择高阻密栅,尽量把栅线做高做细。在实际生产中考虑到各方面工艺因素的影响,需将理论分析与实验相结合,最终通过测试结果确定最佳的设计方案。

根据以上理论分析,通过对设备和工艺进行调整,将工艺上可实现的Wf值由原有的90μm降到80μm。通过计算和实验相结合,不断的调整方块电阻和最佳栅线间距,根据最终的IV特性数据对比分析,最后将方块电阻由原有的50Ω/口调整为55Ω/口,最佳细栅线间距设计为0.214cm。改进后的各种功率损失见表1。经过优化改进的太阳能电池在减少由电极设计引起的总功率损失的前提下光电转化效率提高了0.1%。


4结束语

文中对给定的太阳能电池给出了获取最大功率输出的栅线电极设计方法。电极的优化设计是从电极图形与细栅线宽度和扩散薄层电阻的配合来进行的,提出了高阻密栅的设计方向。通过在原有工艺的基础上将理论分析和实际生产实验相结合,减少了由电极设计所引起的功率损失的同时提高了光电转换效率。

索比光伏网 https://news.solarbe.com/201807/30/291500.html

责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

正信光电 | 让每一瓦电力更高效的光伏科技制造工厂来源:正信光电 发布时间:2025-12-04 14:57:25

作为全球领先的光伏组件制造商,正信光电自成立以来,始终致力于通过创新的技术和精密的生产工艺,推动绿色电力的普及与应用。正信光电始终坚持技术创新和质量至上的原则,通过精密的工艺和智能化的生产管理,我们为每一块光伏组件注入可靠的动力,让每一瓦绿电都更高效。正信光电,凭借卓越的工艺与技术,让光伏组件走向未来。