eV),但在室温下会从光活性的黑色α相转变为非光活性的黄色δ相。稳定α相的三大策略:组分工程(Compositional Engineering):混合不同阳离子(如Cs⁺, MA⁺, FA⁺)或
工程建立了一种通用的分子设计策略。创新点: 1)首次设计氯胺盐酸盐分子桥实现SnO₂/钙钛矿双界面协同钝化,TCEA通过多Cl分支形成强键合(2.23 eV);2)揭示分子调控结晶机制,TCEA
exciton)。裂变发生: 这个单重态激子能迅速、高效地“分裂”成两个能量较低的三重态激子(Triplet exciton)能量约1.25 eV。效率优势:
Tc的三重态能量刚好高于晶体硅(c-Si
)的1.1
eV带隙的三重态能量,这对于耦合到c-Si是理想的,此过程理论上能将一个高能光子转化为两对可利用的载流子(电子-空穴对),潜在量子效率可达200%。 如何让硅“接收”裂变的三重态能量
引入高发光的三苯胺官能团,设计并合成了一种熔融的非富勒烯受体Z-Tri。本文要点1) PM6:Z-Tri二元体系实现了0.137
eV的低ΔEnr。在这一基础上,Z-Tri被用作客体组分掺入到
PM6:L8-BO共混物中,基于PM6:L8-BO:Z-Tri的三元OSC实现了20.32%的PCE,同时具有0.196
eV的低ΔEnr和0.927 V的开路电压(Voc)。2)
对理论和实验
产生强相互作用的单分子层(含氟基团与丙烯酰氧基)。紫外光电子能谱(UPS)证实,BA-8FH可优化钙钛矿/C60界面的能带排列,使非辐射复合显著降低,载流子寿命明显延长。基于1.58 eV带隙钙钛矿的
能级排列,并抑制钙钛矿表面的非辐射复合。基于该策略,涂布制备的带隙1.67 eV钙钛矿太阳能电池实现了22.0%的功率转换效率。这一方法有望在突破现有性能瓶颈、推动钙钛矿太阳能电池逼近理论效率极限
全钙钛矿串联太阳能电池(TSCs)由宽带隙(WBG, 1.7-1.8 eV)的顶部电池与窄带隙(NBG, 1.2-1.3 eV)的底部电池组成,被认为是有望打破单结钙钛矿太阳能电池(PSCs
、智慧储能、高效EV充电领域,致力于提供“极简部署、极致安全、极佳体验”的光储充产品与分布式能源解决方案。思格主动服务与支持国家“双碳” 战略目标,将人工智能与储能技术融合,提供全面革新的智慧能源解决方案,以新质生产力驱动全球经济社会绿色转型。
)涂层玻璃基板、带隙1.68eV的钙钛矿吸收层、富勒烯(C60)和氧化锡(SnO2)组成的电子传输层、另一层ITO、基于氟化镁(MgF₂)的抗反射涂层以及银(Ag)金属接触构成。各层材料相互协作,共同
——4-(11H-苯并咔唑-11-基)丁基(4-PhCz),通过增强SAM在氧化铟锡(ITO)上的覆盖率和SAM与钙钛矿的相互作用,双面强化界面。基于1.67 eV带隙的钙钛矿太阳能电池(PSC