/钙钛矿、HTL/钙钛矿/ETL薄膜及完整器件(分别标记为Pero、HTL、p-i-n和device)在有/无BA-8FH处理时的PLQY测试结果。(b) 对照组与BA-8FH处理样品对总电压损失的
蔚山国立科学技术研究所(UNIST)、蔚山大学和群山国立大学的研究人员开发了一种多功能空穴选择性层(mHSL),旨在显着提高钙钛矿/有机叠层太阳能电池(POTSCs)的性能。据报道,这种薄膜材料能够
㎡。重点展示秦创原创新驱动平台成果、科技成果转化项目及专精特新企业技术突破。作为高新技术企业代表,中茂绿能科技携碲化镉(CdTe)、钙钛矿薄膜光伏组件两大创新成果亮相“科技创新展”,以创新技术诠释
“新质生产力”,助力“双碳”目标实现。中茂绿能科技(西安)有限公司专注于碲化镉、钙钛矿薄膜太阳能电池研发、生产。重点围绕薄膜太阳能电池转换效能、稳定性、产业化等方面开展研究。2024年10月中茂绿能科技(西安
TEMPO-FAPI3 PSCs。TEMPO添加剂可促进增强的结晶动力学,产生具有更高均匀性和更低缺陷密度的薄膜,这已通过光致发光(PL)、轮廓测定和正电子湮没寿命光谱(PALS)得到证实。根据ISOS
纳米(深红光)波长范围内的红光发光二极管的性能尚未达到上述高度,仍有待进一步提高。阻碍设备性能的一个关键挑战是通过溶液加工合成的钙钛矿薄膜中的缺陷。卤素空位缺陷因其形成能量低而在金属卤化物钙钛矿中十分
普遍,众所周知,这种缺陷会诱发离子迁移,从而引发非辐射重组和薄膜降解。一种广泛使用的缓解过钙钛矿薄膜缺陷的策略是引入添加剂,通过特定的官能团(如
P═O、S═O 等)钝化
Pb离子的悬空键。然而
控制钙钛矿晶体生长,从而形成薄膜形貌,一直是钙钛矿光伏发展的基础。MAPbI3钙钛矿一直是此类半导体的主力材料,其成分相对简单,效率高,吸引了工业规模生产。尽管如此,其不稳定性阻碍了其进一步开发利用
了一种快速结晶方法,通过溶剂处理在薄膜形成过程中诱导快速结晶,从而减少钙钛矿晶格微应变和陷阱密度。高效率太阳能电池使用这种方法制备的MAPbI3太阳能电池效率接近22%,并且在85°C下经过900小时后效
十分之一。这种薄膜材料可制成半透明或柔性组件,正在开启建筑光伏一体化、可穿戴设备供电等全新应用场景。在这场钙钛矿光伏技术革命的核心战场,新材料开发正成为决胜关键。其中,自组装单分子层(SAMs)作为关键
HOMO/LUMO等量子化学特征)、分子描述符计算(分子量、各类原子数等)和分子动力学模拟薄膜自组装行为。筛选出的候选分子经高通量合成制备后,通过光电转化效率、开路电压等实验指标验证性能。结合上述数据基于
三维层流风场技术,攻克了钙钛矿薄膜大面积结晶均匀性难题。“三维层流风场技术就像在涂了钙钛矿溶液的玻璃基板上放置一个结构复杂的‘抽油烟机’。通过巧妙结合旋涂工艺、真空闪蒸工艺,让气流平稳、均匀、定向
地掠过玻璃基板,起到干燥的作用,从而让钙钛矿更均匀地结晶。”颜步一说,通过计算流体力学仿真优化,三维层流风场技术实现了对钙钛矿薄膜厚度的精准控制,使0.79平方米面积上的钙钛矿薄膜厚度波动小于3微米
处理的钙钛矿薄膜的Pb
4f和g) I 3d X射线光电子能谱。钙钛矿表面不同吸附过程的示意图。钙钛矿薄膜特性表征。开尔文探针力显微镜(KPFM)表面电势图像:(a) 对照组,(b) 2AN处理
,(c) 6AN处理,(d)
2AN+6AN复合处理薄膜;(e) 薄膜表面电势统计分布;(f,g) 对照组及经2AN、6AN和2AN+6AN处理薄膜的紫外光电子能谱(UPS);(h)
经
文章介绍所有钙钛矿叠层太阳能电池(PTSC)都有望克服单结钙钛矿太阳能电池(PSC)的肖克利-奎塞尔极限。然而,由于广泛的薄膜缺陷、界面退化和相分离,宽带隙(WBG)子电池会遭受较大的光电压损失
)NiOx表面H1100二聚体的DFT计算模式,以及(c)相应的吸附能。(d,e)DMF冲洗后,对照和PMDA改性的NiOx薄膜的P元素的EDX图谱。(f)DMF冲洗后对照和PMDA改性NiOx薄膜的覆盖