
该文章研究了一种新型有机机致发光 (ML) 材料,旨在解决传统 ML 材料在明亮环境中受日光或其他光源干扰的问题。作者通过打破分子共轭并调整堆积模式,设计并合成了系列二苯基膦氧化物衍生物,成功实现了太阳盲紫外 (UV) 区域的 ML 发射,其中 DPO3C 和 DPO4C 在机械刺激下展现出 293 nm 的最强 ML 发射,首次实现了有机太阳盲紫外 ML 材料。此外,作者还通过主客体掺杂策略,实现了从太阳盲紫外 (293 nm) 到近红外 (NIR, 741 nm) 的宽范围可调 ML 发射。这项研究为开发在明亮环境中可检测的 ML 材料,并推动 ML 应用于压力传感、材料损伤监测等领域开辟了新的途径。

图1. 紫外线(UV)机械发光(ML)发射器的设计策略和分子结构。

图2. 二苯基磷氧化物衍生物的分子结构和光物理性质。a) 二苯基磷氧化物衍生物的化学结构。b) DPO4C晶体在254 nm激发下的光致发光(PL)和机械发光(ML)光谱。c) 在明亮环境中,DPO4C的ML光谱和太阳光光谱(背景)。插图:明亮环境中的测试装置图。

图3. 单晶分析和理论计算。a) DPO4C的单晶结构和晶体照片。b) DPO4C的分子间相互作用。c) DPO4C的分子堆积。d) 计算了DPO3C和DPO4C的构象、静电势分布(蓝色区域代表负功,红色区域代表正功)和偶极矩矢量。

图4. 主客体掺杂体系的照片和光物理性质。a) 客体(G1–G7)的分子结构以及不同主客体掺杂材料的机械发光(ML)照片。b) DPO4C和主客体掺杂材料的光致发光(PL,λex = 254 nm)和机械发光(ML)光谱。

图5. 灵敏度器件应用的示范。a) 通过熔融铸造方法制备的灵敏度器件。b) 在不同冲击下DPO4C薄膜的机械发光(ML)光谱。c) 最大ML强度与冲击之间的关系。d) 在折叠和拉伸刺激下DPO4C薄膜的照片。(左:普通相机拍摄;右:太阳盲相机拍摄。)e) 车辆碰撞记录过程的示意图和碰撞过程中的照片。(左:普通相机拍摄;右:太阳盲相机拍摄。)
索比光伏网 https://news.solarbe.com/202505/29/389757.html

