文章介绍在有机太阳能电池中,三元策略是获得高效有机太阳能电池的主流途径,深入理解提高开路电压(VOC)的工作机理和材料选择标准是实现有机太阳能电池进一步突破的关键。基于此,香港理工大学李刚等人通过
。相反,它们与受体的良好相容性在增强VOC中起着关键作用。这些低聚物有效地抑制了受体的过度聚集,并实现了聚集引起的猝灭抑制(ACQS),增强了外部电致发光量子效率(EQEEL)并降低了非辐射复合能量损失
PCE。1. 研究背景与挑战钙钛矿太阳能电池(PSCs)作为新兴光伏材料,功率转换效率(PCE)快速提升,但溶液法制备的钙钛矿薄膜存在结构缺陷(如空位、间隙、取代缺陷),导致离子迁移、复合损失
光致发光(PL)轨迹。每个瞬态过程均标注了重均寿命。实线为动力学轨迹的指数拟合(参见表
S5)。图中还展示了仪器响应函数(IRF)。(c)三种薄膜在监测波长为 756±3 nm、激发波长为 505
感
HTL 迫在眉睫。二、材料设计与制备P3CT-TBB 的合成通过 1,3,5 - 三 (溴甲基) 苯(TBB)对聚 (P3CT)进行 p 型掺杂,TBB 从
P3CT 噻吩链吸电子,促进掺杂。关键改性
P3CT 的表面电势分布图 3. 载流子传输行为的表征(A 和 B) (A) P3CT-TBB / 钙钛矿与 P3CT / 钙钛矿的光致发光(PL)和 (B) 时间分辨光致发光(TRPL)曲线。(C
文章介绍具有宽带隙钙钛矿和Cu(In,Ga)Se
2的薄膜叠层太阳能电池有望成为具有成本效益的轻质光致发光器件。然而,由于宽带隙钙钛矿中的复合损耗和光热诱导退化,钙钛矿/Cu(In,Ga)Se
专注于通过控制钙钛矿材料的结晶过程来提高钙钛矿太阳能电池的性能。科研团队通过精确控制钙钛矿材料的结晶条件,优化了材料的电子结构和界面特性,从而提高了电荷传输效率和电池的整体性能。研究意义:性能提升
、MPA 等,可低成本提升器件性能。未来方向先进表征:RAIRS、TOF-SIMS 等解析掩埋界面机制。计算筛选:结合第一性原理与机器学习设计高效界面材料。策略协同:ALD 技术与分子挤出工艺结合,提升
示意图图 2. a) PbI₂分布调制示意图。b) 热退火过程中 IPA-CbzNaph 和 Co-CbzNaph 的原位光致发光(PL)强度演变。c)
热退火时间内的 PL 峰值强度演变。d
转换效率可超过100%。例如,在掺杂稀土离子的发光材料中,可以通过能级级联或双离子协同跃迁实现量子裁剪。图1(a、b)展示了Bi³⁺–Eu³⁺共掺杂YVO₄下转换材料在可见光和紫外光激发下产生的发光(在
调节这些分子的聚集行为,从而提高受体材料的光致发光量子产率 (PLQY)
值并减少相应器件中的非辐射复合电压损失。我们的研究结果表明,降冰片烯单元的引入有效地抑制了过度的分子聚集,并显着提高了受体
:这种受体展现出高的光致发光量子产率和适中的结晶度,平衡了电池的效率和稳定性。低电压损失:采用这种受体的有机太阳能电池实现了高效率和低电压损失。研究内容:该研究专注于通过分子设计来提高电子受体的性能
该文章研究了将 Bi3+ 和 Sb3+ 掺杂到 Cs2NaLuCl6: Ag+ 中制备单相全可见光谱宽带白光发光材料的可能性。与传统的多色荧光粉混合方式相比,单相白光发光材料可以克服荧光粉转换
金属卤化物钙钛矿是用于发光二极管(LED)的很有前景的材料。利用纳米晶体/量子点、低维钙钛矿和超薄钙钛矿层对电荷载流子进行空间限制,都被用于提高钙钛矿发光二极管(PeLED)的外量子效率。然而
域、大晶粒全无机钙钛矿晶体的替代策略。使用牺牲添加剂次磷酸和氯化铵来诱导溴化铯铅的成核和结晶,从而得到具有最小陷阱密度和高光致发光量子产率的单晶颗粒。得益于高载流子迁移率和抑制的俄歇复合,我们获得了
。本文提出了一种新型的
Rb-Cs 合金准二维钙钛矿材料,实现了低阈值放大自发辐射 (ASE) 和优异的谱稳定性。通过精确调节 Rb-Cs 比率,实现了 ASE 波长在 481-532
nm
。此外,该材料表现出优异的谱稳定性,即使在长时间热退火后,ASE
谱依然稳定,克服了卤素迁移引起的降解问题。图 1. a, e) 通过部分替换Cs+离子为Rb+离子,实现的Rb-Cs合金化准二维钙钛矿