26.02%空穴传输材料P3CT-TBB!华东师范大学方俊锋&李晓冬用于高效倒置钙钛矿太阳能电池的厚度不敏感聚合物空穴传输层

来源:钙钛矿学习与交流发布时间:2025-07-08 09:54:18

近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL 厚度,其厚度需严格控制在 <5 nm,若 SAM HTL 厚度超过 10 nm,将导致效率大幅损失。在此,华东师范大学方俊锋&李晓冬报道了一种厚度不敏感的聚合物 HTL(P3CT-TBB),通过 1,3,5 - 三(溴甲基)苯(TBB)对聚 [3-(4 - 羧基丁基)噻吩](P3CT)进行 p 型掺杂制备而成。TBB 可从 P3CT 的噻吩链中夺取电子,促进其 p 型掺杂。与对照 P3CT 相比,掺杂后的 P3CT-TBB 薄膜电导率提升约 10 倍。因此,基于 P3CT-TBB 的倒置 PSCs 展现出超过 26% 的最高效率,且无厚度敏感性 —— 当 P3CT-TBB 厚度超过 60 nm 时,PSCs 仍能保持超过 24% 的效率。此外,由于空穴提取能力的提升,器件稳定性也得到改善,在 ISOS-L-2 协议(65°C)下进行 1200 小时最大功率点(MPP)跟踪后,仍能保留约 90% 的初始效率。

一、研究背景与目的

倒置钙钛矿太阳能电池(PSCs)的发展现状效率已达 27%,关键依赖高效空穴传输层(HTL),如自组装单层(SAM)类分子(Me-2PACz 等),但 SAM 厚度需严格控制在~5 nm,>10 nm 时效率从 23% 降至 15%,限制大规模应用。

聚合物 HTL 的挑战虽导电性优于 SAM,但厚度超过 20 nm 时效率仍显著下降,如 P3CT 在 50 nm 时效率仅为初始 60%,开发厚度不敏感 HTL 迫在眉睫。

二、材料设计与制备

P3CT-TBB 的合成通过 1,3,5 - 三 (溴甲基) 苯(TBB)对聚 [3-(4 - 羧基丁基) 噻吩](P3CT)进行 p 型掺杂,TBB 从 P3CT 噻吩链吸电子,促进掺杂。

关键改性效果电导率提升~10 倍(P3CT-TBB 为 1.132 S/m,P3CT 为 0.108 S/m),空穴迁移率提升至 1.27×10⁻³ cm²・V⁻¹・s⁻¹,费米能级下移至 - 4.80 eV,与钙钛矿能级(-5.40 eV)更匹配。

三、性能表征

1、结构与电学表征

FTIR 与 XPS证实 P3CT 与 TBB 的相互作用,S 2p 峰位移表明 P3CT 链带正电。

ESR 与 C-AFMP3CT-TBB 出现单一线性信号,电流分布均匀,平均电流 2.15 nA(P3CT 为 0.25 nA)。

2、能级与载流子传输

UPS 与 KPFMP3CT-TBB 价带顶下移至 - 5.12 eV,接触电位降至 - 300 mV,促进空穴提取。

PL 与 TRPLP3CT-TBB / 钙钛矿的荧光寿命缩短至 492.37 ns(P3CT 为 812.38 ns),载流子提取加快。

3、模块性能

12 cm² 迷你模块效率 21.35%,优于 P3CT 模块的 16.21%。

4、阻抗与光谱

P3CT-TBB 器件串联电阻(10.03-29.73 Ω)远低于 P3CT(18.37-79.53 Ω),EQE 曲线在 > 650 nm 区域响应稳定。

四、稳定性

操作稳定性65°C 下 ISOS-L-2 协议 MPP 跟踪 1200 小时,保留~90% 初始效率(P3CT 仅 750 小时保留 80%)。

热稳定性85°C 氮气环境老化 800 小时,保留~90% 效率,湿气 - 热稳定性良好。

五、结论

P3CT-TBB 通过 TBB 掺杂实现厚度不敏感性,在 16-69 nm 范围内维持 > 24% 效率,为倒置 PSCs 及模块的商业化提供了高效稳定的 HTL 解决方案。

关键问题

为什么 P3CT-TBB 能实现厚度不敏感性?

TBB 对 P3CT 进行 p 型掺杂,从噻吩链吸电子,使 P3CT-TBB 电导率提升约 10 倍(达 1.132 S/m),且能级下移(费米能级 - 4.80 eV),与钙钛矿能级更匹配,减少了厚度增加导致的串联电阻上升和空穴提取障碍,因此在 16-69 nm 厚度范围内效率波动小。

器件制备过程

1. ITO 基板清洗

依次用洗涤剂、去离子水、丙酮、异丙醇超声清洗,每步 20 分钟,氮气吹干后紫外臭氧处理 20 分钟。

2. 空穴传输层(HTL)制备

P3CT 溶液:15 mg/mL 甲醇溶液。

P3CT-TBB 溶液:3 mg TBB 溶于 1 mL P3CT 溶液(15 mg/mL),60°C 搅拌 48 小时,过滤后稀释至不同浓度(对应厚度 16-86 nm,浓度 0.5-13 mg/mL)。

旋涂参数在空气中以 4000 rpm 旋涂 30 秒,100°C 空气退火 10 分钟。

厚度控制通过调节溶液浓度(0.5-13 mg/mL)制备 9、16、22、38、54、69、86 nm 厚度的 HTL。

3. 钙钛矿层制备

前驱体组成1.3 M (FA₀.₉₅MA₀.₀₅)₀.₉₅Cs₀.₀₅Pb (I₀.₉₅Br₀.₀₅)₃(含 20% MACl),具体包括 FAI 201.8 mg、MABr 7 mg、CsI 16.8 mg、PbBr₂ 23.8 mg、PbI₂ 569.4 mg、MACl 21.8 mg,溶于 DMF:DMSO=8:1(v/v)混合溶剂。

旋涂条件氮气手套箱内,先 2000 rpm 旋涂 10 秒,再 4000 rpm 旋涂 20 秒,旋涂 20 秒时滴加 150 μL 氯苯(CB),120°C 空气退火 20 分钟(25°C,湿度 30%)。

钝化处理冷却后用 2 mg/mL PEACl 的 IPA 溶液 4000 rpm 旋涂 30 秒。

4. 电子传输层及电极沉积

PCBM 层10 mg/mL CB 溶液,2000 rpm 旋涂 45 秒。

真空蒸镀转移至真空腔(5×10⁻⁴ Pa),依次蒸镀 C60(30 nm)、TPBi(6 nm)、Cu(100 nm)。

器件面积有效面积 0.09 cm²(Cu 与 ITO 重叠区域),J-V 测试使用 0.0836 cm² 金属掩膜

图 1. P3CT 与 TBB 掺杂的表征

(A) P3CT 和 TBB 的分子结构。

(B) P3CT-TBB 中电荷分布的密度泛函理论(DFT)模拟。

(C) P3CT 和 P3CT-TBB 的 S 2p1/2 和 2p3/2 的 X 射线光电子能谱(XPS)。

(D) P3CT-TBB、P3CT 和 TBB 的电子自旋共振(ESR)曲线。

(E 和 F) (E) P3CT-TBB 和 (F) P3CT 的导电原子力显微镜(C-AFM)映射图。

(G) P3CT-TBB 和 P3CT 的 C-AFM 线轮廓。虚线表示 C-AFM 曲线的位置。

(H) Au/P3CT-TBB (P3CT)/Au 横向器件的电流 - 电压曲线。

图 2. P3CT-TBB 与 P3CT 的能级结构和表面电势

(A 和 B) (A) 二次电子截止和 (B) 费米边缘区域的紫外光电子能谱(UPS)。

(C) 钙钛矿太阳能电池的能级排列。

(D 和 E) (D) P3CT-TBB 和 (E) P3CT 的开尔文探针力显微镜(KPFM)映射图。

(F) P3CT-TBB 与 P3CT 的表面电势分布

图 3. 载流子传输行为的表征

(A 和 B) (A) P3CT-TBB / 钙钛矿与 P3CT / 钙钛矿的光致发光(PL)和 (B) 时间分辨光致发光(TRPL)曲线。

(C 和 D) (C) 基于 P3CT-TBB 和 P3CT 的钙钛矿太阳能电池(PSCs)的瞬态光电流(TPC)和 (D) 莫特 - 肖特基(Mott-Schottky)曲线

图 4. 器件性能

(A) 不同厚度 P3CT 器件的 J-V 曲线及倒置钙钛矿太阳能电池(PSCs)的结构。

(B) 不同厚度 P3CT-TBB 器件的 J-V 曲线。

(C 和 D) 不同厚度 (C) P3CT 和 (D) P3CT-TBB 的 PSCs 的电化学阻抗谱(EIS)曲线。

(E) 孔径面积为 12 cm² 的 P3CT 和 P3CT-TBB 基迷你模块的 J-V 曲线。

(F) 不同厚度 P3CT-TBB 的 PSCs 的外量子效率(EQE)和集成短路电流(Jsc)曲线。

图 5. 器件稳定性

(A) 未封装的 P3CT-TBB 基和 P3CT 基钙钛矿太阳能电池(PSCs)在 65°C 连续光照下进行最大功率点(MPP)跟踪时的操作稳定性。

(B) 未封装的 P3CT-TBB 基和 P3CT 基 PSCs 在 85°C 下的热稳定性

论文标题:Thickness-insensitive polymeric hole-transporting layer for efficient inverted perovskite solar cells

发表期刊:《Joule》

发表时间:2025年7月1日

作者:Zhengbo Cui ∙ Wen Li ∙ Bo Feng ∙ Yunfei Li ∙ Nannan Sun ∙ Wenxiao Zhang ∙ Sheng Fu ∙ Xiaodong Li xdli@phy.ecnu.edu.cn ∙ Junfeng Fang


索比光伏网 https://news.solarbe.com/202507/08/391142.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
AFM:硫族钙钛矿 LaScS₃-石墨烯复合薄膜实现 p 型透明导电材料来源:知光谷 发布时间:2025-12-24 09:22:19

然而,缺陷阻碍了LSS薄膜实现有效的导电性。本工作不仅为基于溶液法制备硫族钙钛矿薄膜提供了可扩展的路径,也为开发用于透明电子器件的p型透明导电材料提出了新策略。

Sang Il Seok最新AEL:协同偶极工程释放宽禁带钙钛矿中92.8% S-Q 电压极限,用于叠层光伏来源:知光谷 发布时间:2025-12-24 09:20:57

最终,最优WBGPSC实现了VOC=1.29V、JSC=20.0mAcm、FF=82.8%和PCE=21.27%,对应Shockley–Queisser电压极限的92.8%。这些结果表明,协同缺陷钝化与能级调控对于释放WBG钙钛矿的完整电压潜力均至关重要。研究亮点:突破性电压表现:通过协同表面处理,宽禁带钙钛矿电池开路电压达1.29V,实现Shockley–Queisser理论极限的92.8%,为同类器件中最高之一。高效叠层集成:经处理的宽禁带钙钛矿作为顶电池,与硅底电池组成叠层器件,实现26.8%的光电转换效率与1.91V的高开路电压,展示其在实际叠层光伏中的应用潜力。

中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

钧达股份:正积极推进钙钛矿及钙钛矿叠层电池的商业化应用来源:证券时报e公司 发布时间:2025-12-23 16:36:15

钧达股份12月22日在机构线上电话会议表示,公司深耕光伏电池技术研发,在下一代钙钛矿技术领域布局深远,已与仁烁、中科院、苏州大学等单位开展研究,已实现关键突破:钙钛矿叠层电池实验室效率达32.08%,居于行业领先水平;2025年11月完成首片产业化N型+钙钛矿叠层电池下线,攻克底电池结构优化、高效介质钝化膜沉积等核心技术,具备独立开展叠层工艺研发与小规模生产的能力,正积极推进钙钛矿及钙钛矿叠层电池的商业化应用。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

南京工业大学曹久朋&秦天石AEL:调节宽带隙钙钛矿结晶并抑制相位分离制备高性能钙硅叠层器件来源:先进光伏 发布时间:2025-12-23 10:58:16

论文概览宽带隙钙钛矿太阳电池是叠层光伏器件的关键组成部分。然而宽带隙钙钛矿中较高的溴离子含量容易导致复杂的结晶过程和薄膜质量的降低。光稳定性测试中PA改性器件在1000小时连续光照老化后保持90.1%初始效率,远超对照组,证明2D钙钛矿通过结晶调控与相分离抑制实现钙硅叠层器件光电转换效率和长期稳定性的协同突破。这项工作为制备高质量宽带隙钙钛矿以及高性能钙硅叠层太阳能电池提供了重要的材料设计以及工艺路线指导。

AFM:双功能电子传输层工程实现能级对齐与界面钝化,打造高效钙钛矿发光二极管来源:知光谷 发布时间:2025-12-23 10:00:54

我们深入研究了BPAH对ETL能级和迁移率的影响,并揭示了其与发光层之间的强相互作用,有效钝化了发光层表面缺陷,促进了电荷传输与辐射复合。研究亮点:一分子双功能:BPAH实现ETL能级调控与界面钝化BPAH分子插入POT2T分子间隙,改善π-π堆叠,提升电子迁移率;其咪唑基团与发光层中未配位Pb配位,增强铅-卤键结合力,有效抑制卤离子迁移与界面缺陷。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。