狭缝模涂工艺中。Er-Raji说:“这项工作的一个关键新颖之处在于确定了刀片速度和钙钛矿转化率之间的直接相关性—这是混合方法中的一个关键参数,用于量化蒸发的无机材料向钙钛矿光活性相的转化。“我们的观察
了更深入的了解,我们将利用这些见解来改进钙钛矿成分,旨在提高我们设备的运行稳定性。计划进一步研究界面钝化,以最大限度地减少缺陷诱导的非辐射复合并扩展稳定性,以及可扩展的湿化学方法、喷墨打印和喷涂工艺。研究团队还包括来自弗莱堡大学(University of Freiburg)的研究人员。
已报道钙钛矿太阳能电池的文献中,缺陷钝化的材料和元素很少提及氢(H),也基本没有悬挂键的概念,而对于晶硅电池的缺陷钝化基本上指的就是氢钝化,PECVD/ALD等沉积过程引入的氢元素在硅太阳能电池
中担任主要的钝化角色,不止可以钝化界面的悬挂键还可以通过光注入激发,扩散钝化基体内部缺陷,有效降低非辐射复合,明显提高电池开路电压(Voc)。氢钝化的概念贯穿所有类型的晶硅电池,所以必不可少,但是实际上
系数、高的缺陷容忍度、出色的载流子特性和优异的光电性质,使其在光伏电池、发光二极管、光电探测器等半导体器件领域展现出优异的性能而备受关注。尽管钙钛矿具有带隙可调性,但其光吸收依然受限于1000
nm
红外光区具有显著的光电响应,器件表现出更低的暗电流、优异的近红外响应度和探测率(图5)。总之,本研究提出一种新颖的“超分子诱导”策略,在金属卤化物钙钛矿中实现了显著的可见至红外的光吸收,光谱拓展至
摘要第一作者:西湖大学王思思博士通讯作者:西湖大学王睿&浙江大学薛晶晶表面缺陷钝化对于提高钙钛矿太阳能电池的效率和稳定性至关重要。然而,其可重复性和普遍适用性尚未得到充分探索,这限制了大规模生产
。在此,西湖大学王睿&浙江大学薛晶晶我们介绍团队研究了一种基于氟化异丙醇的钝化策略,该策略可通过仅一层薄的低维钙钛矿实现表面缺陷的完全钝化,且不干扰电荷传输。氟化异丙醇降低了钝化剂分子与钙钛矿的反应活性
存量厂房屋顶达58亿㎡,若实现30%渗透率(17.4亿㎡),可释放174GW装机空间。痛点在于——传统组件因重量限制,导致大量屋顶长期闲置。而银河系列凭借革命性的轻量化突破,实现承载能力的本质跃升,正
项目安徽滁州定远县张桥镇轻纺产业园 6MW项目2、低荷载屋面解决方案针对承重不足的屋面结构(设计缺陷或老化所致),固德威推出专项低荷载屋面解决方案。方案搭载银河系列轻质组件(≤6kg/m²),大幅减轻
度检测数据,构建起全维度检测体系。搭配自主研发的 AI 算法,实现了检测精度的飞跃 —— 缺陷识别准确率高达 99%,钙钛矿电池漏检率从 5% 骤降至 1%。系统还具备强大的全场景应用能力,在
顶部半透明钙钛矿层和底部铜铟镓硒化物(CIGS)电池制造了一种两端(2T)叠层太阳能电池。他们报告说,钙钛矿在商业CIGS衬底粗糙、不规则表面上的覆盖率有所提高,并减少了体缺陷—这是钙钛矿-CIGS
叠层电池的长期挑战。该团队表示,这些表面特征历来阻碍了有效的集成和有限的性能。研究人员使用D-高丝氨酸内酯盐酸盐(D-HLH)作为钙钛矿前驱体中的添加剂,以增强吸收层的结晶。据报道,这减少了薄膜缺陷
(西安交通大学杨冠军), Bo Chen(西安交通大学陈波)研究背景二维/三维钙钛矿异质结通过有效钝化三维钙钛矿薄膜缺陷、提供有利能带排列、抑制非辐射复合、改善载流子动力学并引入疏水性,成为提升钙钛矿
证明更高,有望实现高效又稳定)研究内容本研究创新性地采用脒基二维间隔阳离子作为替代方案,利用其更高的酸解离常数,在实现优异缺陷钝化的同时有效缓解去质子化引发的稳定性问题。脒基钝化不仅有助于形成热稳定的
表面缺陷钝化对于提高钙钛矿太阳能电池的效率和稳定性至关重要。然而,其可重复性和普遍适用性尚未得到充分探索,这限制了大规模生产。鉴于此,2025年6月9日西湖大学Rui
Wang等于NE发文,介绍
一种基于氟化异丙醇的钝化策略,仅用一层薄薄的低维钙钛矿就能完全钝化表面缺陷,且不会干扰电荷传输。氟化异丙醇降低了钝化剂分子与钙钛矿的反应活性,并允许使用高浓度的钝化剂,确保缺陷完全被钝化。随后用氟化
表面缺陷钝化是提高钙钛矿太阳能电池(PSCs)效率和稳定性的关键,但其重复性和普适性尚未充分探索,限制了大规模生产。本文西湖大学王睿和浙江大学薛晶晶等人提出了一种基于氟化异丙醇(FIPA)的钝化策略
,通过仅形成一层薄的低维钙钛矿实现表面缺陷的完全钝化,且不影响电荷传输。FIPA降低了钝化剂分子与钙钛矿的反应性,允许使用高浓度钝化剂以确保缺陷完全钝化,随后用FIPA和异丙醇(IPA)混合溶剂冲洗