Freiburg大学团队专注于太阳能电池中的氢影响:利与弊

来源:太阳能电池札记发布时间:2025-06-17 10:06:19

已报道钙钛矿太阳能电池的文献中,缺陷钝化的材料和元素很少提及氢(H),也基本没有悬挂键的概念,而对于晶硅电池的缺陷钝化基本上指的就是氢钝化,PECVD/ALD等沉积过程引入的氢元素在硅太阳能电池中担任主要的钝化角色,不止可以钝化界面的悬挂键还可以通过光注入激发,扩散钝化基体内部缺陷,有效降低非辐射复合,明显提高电池开路电压(Voc)。氢钝化的概念贯穿所有类型的晶硅电池,所以必不可少,但是实际上过量的H引入也会导致电池衰减。本文分享弗赖堡大学团队的一篇综述结果,该团队聚焦于晶硅电池中H的研究,研究内容非常细致包括H扩散模型建立、计算测试等一系列工作,感兴趣的朋友可以了解一下!

氢的来源

H在硅太阳能电池中主要来自原子层沉积(ALD)、等离子体增强化学气相沉积(PECVD)或低压化学气相沉积(LPCVD)等镀膜技术在沉积薄膜的过程中引入的源气体,其不同的沉积参数会显著影响氢的浓度和扩散行为。研究表明,氢的浓度与SiNₓ:H层的折射率密切相关,而折射率又受层密度的影响。较低的层密度有利于氢的扩散,但过高的密度会阻碍氢分子进入硅体。

氢的双重作用

氢在硅太阳能电池中扮演着“双刃剑”的角色:

积极作用:氢能够钝化硅体缺陷和表面缺陷,减少载流子复合,从而提高电池效率。例如,氢可以与硼-氧复合体结合,显著提升电池的初始性能。

负面影响:氢过量时,会引发两种降解现象:

光致和高温诱导降解(LeTID):在光照和高温条件下,氢与硅中的其他复合体反应,形成缺陷中心,导致电池性能下降。

表面相关降解(SRD):氢向表面扩散后,可能破坏钝化层的化学结构或电荷分布,降低表面钝化效果。

氢与降解现象的关系

1. 光致和高温诱导降解(LeTID)

LeTID是一种在光照和高温条件下发生的性能退化现象,最早在2012年被报道。研究发现,LeTID的严重程度与硅体中的总氢浓度([H]ₜₒₜ)密切相关。当[H]ₜₒₜ超过5×10¹⁴ cm⁻³时,LeTID现象显著加剧;而当[H]ₜₒₜ低于这一阈值时,LeTID几乎可以忽略不计。这表明,控制氢浓度是抑制LeTID的关键。

实验数据还显示,LeTID的退化程度与快烧(fast-firing)工艺的峰值温度(Tₚₑₐₖ)呈指数关系。峰值温度越高,氢的扩散越显著,LeTID现象也越严重。因此,优化快烧工艺参数(如降低峰值温度或调整冷却速率)可以有效减少氢的过量引入。

2. 表面相关降解(SRD)

SRD主要表现为表面钝化层的性能退化,通常发生在LeTID恢复之后。研究发现,SRD的退化程度也与氢浓度呈正相关。氢在退火或光照条件下会向表面扩散,导致表面钝化层的性能下降。例如,在铝氧化物/氮化硅(Al₂O₃/SiNₓ:H)钝化层中,氢的过量存在会引发界面缺陷,从而降低钝化效果。

与LeTID类似,SRD的退化程度可以通过控制氢浓度来抑制。实验数据表明,当[H]ₜₒₜ低于一定阈值时,SRD现象几乎消失。因此,优化氢的引入和扩散过程是减少SRD的有效途径。

氢的管理策略

为了平衡氢的积极作用与负面影响,研究人员提出了多种氢管理策略:

1. 优化SiNₓ:H层的沉积参数

通过调整PECVD工艺中的硅烷与氨气比例,可以控制SiNₓ:H层的氢含量。实验表明,较低的折射率(n≈2.0-2.2)能够最大化氢的引入,而较高的折射率(n>2.4)则会减少氢的扩散。因此,选择合适的沉积参数是实现氢浓度精准控制的关键。

2. 调整快烧工艺

快烧工艺是氢扩散的主要阶段。峰值温度和冷却速率对氢的分布具有重要影响:

峰值温度:较高的峰值温度会显著增加氢的扩散,但也可能加剧LeTID。因此,适当降低峰值温度有助于减少氢的过量扩散。

冷却速率:在冷却阶段,氢会从硅体中向外扩散。实验表明,在600-700°C范围内减缓冷却速率,可以有效减少氢的残留浓度。

3. 使用扩散阻挡层

某些中间层(如Al₂O₃)可以作为氢的扩散阻挡层。研究表明,Al₂O₃层的厚度增加会显著减少氢的扩散。因此,在钝化层设计中引入Al₂O₃层,可以有效控制氢的分布。

未来展望

随着太阳能电池技术的不断发展,氢的管理将变得更加重要。例如,对于隧穿氧化物钝化接触(TOPCon)太阳能电池,氢的引入对表面钝化至关重要,但过量氢又可能导致性能退化。因此,未来的研究需要进一步探索氢的精确控制方法,以实现高效、稳定的太阳能电池设计。

作者心语:该团队也有大量的工作在建模H的扩散动力学方程,各个课题组的模型均不一样,不好细说,但是可以肯定一点实验观测,就是由高浓度H引起的LeTID是一个动态周期过程(衰减-恢复-再衰减-再恢复),满足最早提出的亚稳态模型。



索比光伏网 https://news.solarbe.com/202506/17/390475.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。

四川大学彭强团队NC:溶剂蒸汽扩散驱动多尺度预聚集策略,助力有机太阳能电池突破20.7%效率!来源:先进光伏 发布时间:2025-12-22 16:25:04

论文概览精确调控活性层形貌是提升有机太阳能电池效率的关键,但其复杂性使得实现可重复的最优结构极具挑战。针对此难题,四川大学彭强、徐晓鹏团队创新性地开发了一种溶剂蒸汽扩散策略。实现效率突破:将单结有机太阳能电池效率推升至20.7%以上,跻身世界最高效率行列。结论展望本研究成功开发并验证了一种基于溶剂蒸汽扩散的、用于精确调控非富勒烯受体多尺度预聚集的通用策略。

同济大学材料科学与工程学院陆伟团队关于高熵钙钛矿氧化物材料用于低频电磁波吸收的最新研究成果发表于《科学·进展》来源:钙钛矿材料和器件 发布时间:2025-12-22 13:52:25

论文第一完成单位为同济大学材料科学与工程学院。同济大学陆伟教授与袁宾研究员为论文通讯作者。陆伟教授团队以电磁功能材料为主要研究对象,在多功能集成电磁防护材料等方向进行了系统性研究。在国家重点研发计划、国家自然科学基金等项目的支撑下,近期多项电磁防护材料研究成果发表于高水平期刊。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。