排焦过程后,使浆料中的大部分有机溶剂挥发,然后在高温下烧结成电池片,最终使电极和硅片本身形成欧姆接触,从而提高电池片的开路电压和填充因子这2个关键因素参数,使电极的接触具有电阻特性,达到生产高转化效率
摘要:以高效异质结电池为出发点,阐述了异质结电池技术发展现状,介绍了丝网印刷技术、电镀技术、喷墨打印技术三种不同的电池金属化技术,分析了不同方法在异质结电极制备中存在的优缺点,并对未来低成本、高效率
异质结电池电极金属化技术进行了展望。
0引言
能源和环境的可持续发展已成为全球关注的热点问题,光伏发电拥有传统能源无法比拟的优点,实现了将太阳能直接转换为电能,是最理想的、持续发展的绿色能源。那么
化学气相沉积技术(APCVD)和 离子束辅助沉积技术制备a-Si:H也有研究。目前,HIT电池的电极目前主要采用丝网印刷低温Ag导电浆实现的,降低电极的丝网印刷电阻和细化金属线是实现太阳能电池低成本
360-16um网版,无网结,380-14/430-13um高目数网版也可以使用。
烘干时间和温度的设定会影响电极栅线的线型和黏附力,过短的时间和过低的温度,将导致栅线的线型坍塌和黏附力偏低,并直接会
通过在金属栅线与硅片接触部位及其附近进行高浓度掺杂,而在电极以外的区域进行低浓度掺杂,既降低了硅片和电极之间的接触电阻,又降低了表面的复合,提高了少子寿命,使电池具有以下3点明显的优点: (1)降低
研究人员估计,这种新3D打印方法衍生出的技术大约在2到3年内就能够实现工业应用
美国工程师研发出一种3D打印方法,有可能极大的提升锂离子电池的容量和充放电速度。
如果锂离子电池的电极含有微观的
气孔或者通道,那么它们的容量就会得到极大的改善。目前来说,通过添加物制造的最佳多孔电极,其内部的几何结构是相互交叉的,这就能够让锂离子在充电和放电的过程中自由的在电池内游动,但这并非是最理想的设计
制备发射极,磷扩散掺杂制备n+ 背场。由于n+ 磷背场代替常规p 型硅太阳电池用铝浆印刷技术形成的铝背场,背面电极也采用与正面电极相同的栅线结构,使电池前后表面都能吸收光线,实现双面发电。同时,组件
的层形成金属集电极。这样电池的结构对称,正反面受光后都能发电,同时组件背板采用2.5 mm 厚的透明玻璃,就制成了双面光伏组件。整个制备过程都是在200 ℃下的温度中进行,以避免高温工艺对硅片造成
a-Si∶H/nc-Si∶H 叠层电池的稳定转换效率达到了12.3%。
近期报道提高a-Si∶H 薄膜太阳能电池转换效率可以从电池的结构出发。文献中在p型a-SiC∶H与前电极之间插入一层很薄的p型
c-Si∶H层,可以降低表面接触势垒,使效率得到提高。文献中在铝背电极和不锈钢衬底之间插入一层缓冲层使得太阳能电池的开路电压和短路电流得到提高。
3.3 热氧化法
在太阳电池制造过程中,将已经形成
, 2017 , PP (99) :1-10 不同的优化途径对PERC电池效率提升效果如上图所示。通过采用新型发射极结构、掺硼铝背场、减少正面电极栅线宽度、提高硅片质量、多主栅等技术优化之后,PERC
发射区串联电阻增大,后者会导致电极线电阻增大,即栅线面积越小,串联电阻越大,从而导致填充因子降低,效率降低。因此,主栅和副栅设计的核心是在遮光和导电之间取得平衡。 而多主栅技术可以很好地解决上述矛盾
PECVD系统为逆径向流反应室结构,最大镀膜直径为230mm;采用二级射频等离子体发生装置,上电极兼气流分配器,下电极放置衬底兼加热(图1)。氮化硅膜层的制备过程:源气体扩散,通过喷头均匀送入反应室;在