摘要:随着晶体硅太阳电池技术的不断发展,硅片的厚度不断降低,电池表面钝化对提高太阳能电池转化效率变得尤为重要。本文介绍了表面钝化膜在晶体硅太阳电池中的应用,以及几种晶体硅电池表面钝化方法,包括等离子体增强化学气相沉积法、氢化非晶硅、热氧化法、原子层沉积法以及叠层钝化,并分别介绍了它们在应用上的优缺点。分析了制备钝化膜过程中存在的问题,并提出了相应措施及发展趋势。表面钝化技术是提高晶体硅电池转换效率最有效的手段之一,今后晶体硅电池表面钝化技术仍将是国内和国际研究的热点之一。
1
引言
随着环境污染与能源短缺日趋严重,开发新能源已成为人类社会发展的必然趋势。太阳能作为一种“取之不尽,用之不竭”的清洁能源则得到了人们的广泛关注。目前,制造高效率、低成本的硅太阳电池是光伏能源领域的主要研究热点[1]。降低成本和提高转换效率是太阳电池制备中要考虑的两个主要因素。对于目前的晶体硅太阳电池而言,要想再进一步提高电池的转换效率是比较困难的。因此,人们的研究重点就集中到了如何降低成本。因此,近年来为了降低太阳能电池的成本,硅片的厚度不断降低,将来甚至会向更薄的方向发展。但太阳能电池的薄片化是把双刃剑。
在硅片表面,晶体的周期性被破坏从而会产生悬挂键(如图1),使得晶体表面存在大量位于带隙中的缺陷能级;位错、化学残留物以及表面金属的沉积等都会引入缺陷能级,这些都使得硅片表面成为复合中心。而且,随着硅片厚度的减薄,少数载流子的扩散长度可能接近或大于硅片的厚度,部分少数载流子将扩散到电池背面而产生复合,这将对电池效率产生重要影响[2]。
随着晶体硅太阳电池的薄片化,表面复合成为了影响太阳电池效率的关键因素[3]。因此,如何有效地降低薄片化的太阳电池表面复合变得尤为重要。
晶体硅表面钝化技术可以有效地降低表面复合速率[4]。高效晶体硅太阳电池就是利用良好的表面钝化技术来降低半导体的表面活性,使表面的复合速率降低。其主要方式就是饱和半导体表面处的悬挂键,降低表面活性,增加表面的清洁程序[5],避免由于表面层引入杂质而形成复合中心,由此来降低少数载流子的表面复合速率。
2
表面钝化膜在太阳电池中的应用
2.1表面钝化膜的钝化效果
钝化是制备太阳电池比较关键的工艺,钝化主要通过以下两种方式来减小复合速率,提高少数载流子寿命:一是化学钝化,即使界面的各种缺陷态饱和,降低界面缺陷浓度,从而减少禁带内的复合中心;二是场效应钝化,即通过电荷积累,在界面处形成静电场,从而降低少数载流子浓度。
文献[6]中齐晓光等采用RF-PECVD沉积技术制备P型非晶硅薄膜材料,研究硼烷浓度和加热温度对薄膜性能的影响。通过对两者的优化,制备出了宽光学带隙、高电导率和致密性较好的P型非晶硅材料。作为窗口层应用到HIT太阳电池中,对其厚度进行优化,在n型单晶硅衬底上制备出了效率为14.28%的HIT太阳电池。文献[7]中何悦等利用热原子层沉积设备在硅片上制备了Al2O3薄膜,发现其可有效改善钝化性能使其有效少子寿命达到100μs以上,将表面复合速率降低到100cm/s以下,说明Al2O3薄膜具有良好的钝化性能。文献[8]中采用PECVD 制备105nm AlOx薄膜钝化PERC电池背面,在0.5Ω·cm的4cm2 区熔单晶硅上制得效率为21.5%的电池,这是目前采用氧化铝钝化PERC电池的最高效率,而采用超薄的7nm Al2O3(ALD)/90nm SiOx(PECVD)叠层钝化的电池效率也达到了21.3%。文献[9]中首次将Al2O3钝化用于125mm×125mm大面积3Ω·cm P型直拉单晶硅上,采用15nmAl2O3(ALD)/80nm SiNx(PECVD)叠层钝化,得到电池效率为18.6%,对比于铝背场电池效率高0.7%,电池背面接触区的形成采用了独特的工业用喷墨打印技术。
2.2 表面钝化膜的减反射效果
太阳能电池减反膜的主要作用是减少或消除太阳能电池硅表面的反射光,增加透光量,提高太阳能电池光电转换效率。目前,用作太阳电池减反膜的材料主要有SiO2 (折射率1.4~1.5)、SiNx (1.9)、MgF2(1.3~1.4)、TiO2 (2.3)、ZnS(2.3~2.4)、A12O3(1.8~1.9)、Ta2O3 (2.1~2.3)、Nb2O3 (2.2~2.3)[10],Al2O3的折射率在1.8和1.9之间是很理想的减反射膜材料。而且,钝化膜制备过程中还能对硅片产生氢钝化的作用,能显著改善硅太阳电池的光电效率。
在实际的晶体硅太阳能电池工艺中,氮化硅薄膜作为一种常见的钝化膜,其折射率在1.8~2.5,因此如果将氮化硅作为前表面钝化膜,并将其折射率控制在2.0左右,既能起到很好的钝化作用又能起到较好的减反射效果[11]。