配套工艺、高功率电极的制备工艺、低成本石墨烯材料生产工艺等,研发退役动力电池异构兼容利用与智能拆解技术,加快锂离子电池与新能源汽车产业深度融合,拓展在电动船舶、电网储能、智能和信息装备等方面应用
基聚乳酸材料技术开发及成果转化。
前沿新材料。深化与中国航发北京航空材料研究院等高校院所合作,推进石墨烯材料产业基地建设,发展石墨烯防护装甲材料、石墨烯导电浆料、石墨烯弹性体材料等。推进高温超导
,是制约短期产业化核心之一。成本构成看,硅片、浆料、设备折旧和靶材成本占比中分别为47%、25%、12%和4%。HJT技术需要用的N型硅片整体价格偏高,低温银浆单片用量超过200mg,是目前PERC用量
的耗用有望降低约 20-30mg/片,靶材成本有望持续下降。
2) 设备方面降本。HJT制作工艺流程大幅简化,制绒清洗、非晶硅薄膜沉积、TCO薄膜沉积、电极金属化四个步骤,分别对应的制绒清洗
组件项目将使用最新的高精度串焊,导入银包铜浆料,将极大的压缩异质结技术成本,HJT电池单位银耗与PERC电池单位银耗之间的差距将从2020年的100%左右急剧缩小到20%以内,后续仍有进一步下降空间,贴近
甚至低于PERC银耗量。
在异质结电池银浆单耗上,钧石能源近日宣布取得的重大突破。全新的溅射镀膜方式结合网版设计和新型浆料开发,单片银浆耗量下降50%,使G1硅片制作的异质结电池银浆单耗从150mg
主流电池技术。
Al-BSF改造为PERC产线并不复杂,但效率提升明显。从产线改造角度看,铝背场电池技术的生产工艺主要包括清洗制绒、扩散制结、蚀刻、制备减反射膜、印刷电极、烧结及自动分选七道工序和关键设备,而PERC
变革后周期。为了进一步提升PERC电池转换效率, 在传统的PERC电池工艺基础上不断增加新的工艺,包括SE技术优化、多主栅电极、氧化层增强钝化、背面碱抛及光注入或电注入再生等技术工艺的改进。通过技术
,还能起到像晶硅电池上氮化硅层那样的减反作用。最后通过丝网印刷在两侧的顶层形成金属基电极,这就是异质结电池的典型结构。HJT 电池的结构和工艺与常规硅基太阳电池有很大的区别,总的来说, HJT
太阳电池特点很多。
(1)结构对称。HJT 电池是在单晶硅片的两面分别沉积本征层、掺杂层和TC0以及双面印刷电极。这种对称结构便于缩减工艺设备,相比于传统的晶体硅电池, HJT 电池的工艺步骤也更少
。到目前为止,能做到大规模(GW级)量产MWT组件的只有日托光伏。
MWT,全称是metal Wrap-through(金属缠绕穿透),其主要特点就是通过在电池上设计贯穿电池片的孔洞,用导电浆料将这些空洞
填充并引到电池的背面,背面的相应区域与背电场进行隔离。这样电池正、负电极均位于电池的背面,故称为金属缠绕背接触技术。与常规的PERC电池相比,日托的MWT+PERC电池组件减少了约3%的正面遮光损失
实现高效生产的关键,也就是降本的重中之重。
苏州晶银新材料股份有限公司 项目经理 洪 玮
异质结电池对于低温浆料有以下四个要求:
一是电阻率,银浆低温固化形成电极后电阻率低
,并且要与TCO层形成良好的接触,接触电阻优异,可提升FF;
二是焊接拉力,银浆低温固化形成电极后焊接能力好,并且拉力要达到1.5N/mm以上;
三是可持续印刷,银浆的黏度相对合适,保持良好的高宽比
和N型半导体进行紧密接触,则在交界处会形成内建电场。在光照激发下,电池内部将产生光生载流子(电子空穴对),并在内建电场的作用下发生分离,并由电极引出,形成电流。
图表: 光伏发电原理示意图
背面则依次沉积本征非晶硅薄膜和N型非晶硅薄膜形成背表面场。而由于非晶硅的导电性比较差,因此在电池两侧沉积透明导电薄膜(TCO)来进行导电,最后采用丝网印刷技术形成双面电极。
►HJT电池实现高转化效率
正面金属电极仍以银电极为主,根据CPIA数据,2020年银电极市场占比达到99.9%。目前电池片的金属栅线几乎全部通过丝网印刷的方式制备,2020 年市场占比达到99.9%。生产企业和设备厂家也在研发
技术发展的关键因素,HIT电池生产成本约为0.92元/W,其中包含硅片、浆料(低温银浆)、靶材、设备折旧和其他部分,成本分别为0.5、0.23、0.05、0.05、0.1元/W,占比分别为54.3
年8-10亿元,降低至2020年的5亿元,2021年有望降低至4亿元左右。银浆方面,随着低温银浆国产化和银包铜技术电极优化方案的应用,HIT成本有望进一步降低。
未来HJT电池产能将进一步增加