关系到一个国家的能源安全、生态文明建设等问题,具有重要的意义。光催化制太阳能燃料,即利用太阳能分解水制氢或转化二氧化碳制备燃料(氢气,一氧化碳、甲醇、甲烷等),将太阳能以化学能的形式贮存起来并加以
,但是诺贝尔奖并未青睐后者。这在当时,被看做国内学者距离诺贝尔最近的一次。
张远波与合作者以及盖姆小组在2005年的工作,引领了全球对石墨烯的研究。此后,张远波的工作主要集中在石墨烯的制备、电学输运
气体吸附特性,也让其成为新型储氢材料,可以在室温、安全压力下快速可逆地吸放氢气,较高的热稳定性。
石墨烯独特的二维层状结构和良好的生物相容性,使其能很好地作为药物载体。科学家将石墨烯与抗肿瘤药物反应
)氢气是一种高能量重量比的燃料(142MJ/kg),远高于化石燃料;6)氢气燃烧的最终产物只有水,使用中不会有污染物的排放。因此,利用太阳能来制备氢气,将太阳能转换为化学能的形式来存储,是当前太阳能储能的
、光伏电池和光伏组件几个产业链环节。相关污染的报道主要是指光伏组件的原材料-高纯多晶硅生产中产生的副产物。
推荐高纯多晶硅生产主要使用改良西门子法,该法将冶金级硅转化成三氯氢硅,再加氢气还原成太阳能
级多晶硅,另外会形成副产物四氯化硅。四氯化硅遇潮湿空气即分解成硅酸和氯化氢,如果处理不当会产生污染问题。
推荐但是目前我国多晶硅生产企业采用的改良西门子法已可做到闭路循环生产,将副产物四氯化硅和尾气(氢气
绒、扩散、刻蚀、镀膜、印刷、烧结等,单晶电池和多晶电池的制备工艺主要差别在制绒环节,其余环节仅仅是控制标准的差异。
单晶制绒采用碱溶液腐蚀,腐蚀过程中产生硅酸盐和氢气副产物,通过应用制绒辅助液代替或
单晶硅片与多晶硅片在晶体品质、电学性能、机械性能方面有显着差异。单晶和多晶的差别主要在于原材料的制备方面,单晶是直拉提升法,多晶是铸锭方法,后端制造工艺只有一些细微差别。
晶硅电池发展历程
中红色边框标示,单晶和多晶的差别主要在于原材料的制备方面,单晶是直拉提升法,多晶是铸锭方法,后端制造工艺只有一些细微差别。
图1 晶体硅光伏产业链图示
1839年,法国科学家贝克雷尔发现液体的光生伏特效应。
1917年,波兰科学家切克劳斯基发明CZ技术,后经改良发展成为太阳能用单晶硅的主要制备方法。
1941年,奥
的制备工艺主要差别在制绒环节,其余环节仅仅是控制标准的差异。单晶制绒采用碱溶液腐蚀,腐蚀过程中产生硅酸盐和氢气副产物,通过应用制绒辅助液代替或部分代替异丙醇(IPA),可实现更低的BOD、COD
多晶的差别主要在于原材料的制备方面,单晶是直拉提升法,多晶是铸锭方法,后端制造工艺只有一些细微差别。 图1 晶体硅光伏产业链图示 晶体品质差异图2展示了单晶和多晶硅片的差异。硅片性质的差异性是
/C坩埚接触,以防SiC的生成,因而采用了组合式坩埚。制造高纯度C/C复合材料坩埚的流程很长,从原材料的选择、准备、坯体的制造、增密、纯化、热处理等等, 生产工艺过程长。图2中列出了坩埚制备的一般生产
路线。根据使用要求选择炭纤维, 预制成2-多维炭纤维多孔坯体;对坯体进行纯化后进行增密;纯化和高温热处理。材料制备过程中视情况可穿插安排多次纯化和石墨化处理。根据材料性能要求, 可以只采用化学气相沉积
中产生的副产物。高纯多晶硅生产主要使用改良西门子法,该法将冶金级硅转化成三氯氢硅,再加氢气还原成太阳能级多晶硅,另外会形成副产物四氯化硅。四氯化硅遇潮湿空气即分解成硅酸和氯化氢,如果处理不当会产生污染
问题。但是目前我国多晶硅生产企业采用的改良西门子法已可做到闭路循环生产,将副产物四氯化硅和尾气(氢气和氯气)回收利用,实现清洁生产。2010年12月,国家发布了《多晶硅行业准入条件》,规定还原尾气中
通过模仿树木的能量转换过程,美国科学家日前开发出一种高效的太阳能制氢技术。该技术水解氢气的效率比传统技术高两倍以上,且装置能十分方便地安装在湖泊、海洋和陆地上,为氢燃料的制备提供了一个新的选择
。
对于水解制氢技术,世界各地的科学家们已经探索了多年,但这些技术大都需要将光催化剂置于水中。由于光线与水面接触后会发生折射和衍射,极大限制了这些技术的制备效率。
新研究中,美国