)的显著提升,是效率提升的主要贡献者。水温的“天然冷却”效应:
相较于空气环境,水体通常能提供更有效的散热。太阳能电池的PCE通常随工作温度升高而下降。因此,更低的水温有助于电池维持更高的工作效率
阳光穿透清澈水体,照射在仅0.5厘米深的实验装置中。意大利国家研究委员会物质结构研究所的科学家们记录下一组令人振奋的数据:经过特殊设计的钙钛矿太阳能电池,其在水下的功率转换效率(PCE)竟比在同等
文章介绍在纹理化硅基板上实现具有最佳封装配置的高度有序和均匀覆盖的自组装单层(SAM)仍然是进一步提高钙钛矿/硅叠层太阳能电池(TSC)效率的关键挑战。基于此,隆基绿能何博、徐希翔、李振国、何永才和
优化能级排列,伴随着钙钛矿层的准费米能级分裂(QFLS)值的增加,使得钙钛矿/硅TSC的电压接近2
V,基于硅异质结(SHJ)太阳能电池,其认证的功率转换效率(PCE)高达34.58%。该论文近期以
近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL
厚度,其厚度需严格控制在 5 nm,若
太阳能电池(PSCs)的发展现状效率已达 27%,关键依赖高效空穴传输层(HTL),如自组装单层(SAM)类分子(Me-2PACz 等),但
SAM 厚度需严格控制在~5 nm,10 nm 时效率从
良性掩埋界面对显著提升钙钛矿太阳能电池的性能至关重要。然而,在钙钛矿薄膜沉积过程中确保掩埋界面层的完整性具有挑战性。由于钙钛矿前驱体溶液的高极性特性,大多数界面修饰材料会被溶解,从而影响器件的可
钙钛矿层之间有效的化学桥接作用可抑制缺陷、改善结晶度并降低能量损失。最终,性能最优的钙钛矿太阳能电池实现了
25.08% 的功率转换效率,并具有优异的货架稳定性和光稳定性(符合 ISOS
稳定性
已报道钙钛矿太阳能电池的文献中,缺陷钝化的材料和元素很少提及氢(H),也基本没有悬挂键的概念,而对于晶硅电池的缺陷钝化基本上指的就是氢钝化,PECVD/ALD等沉积过程引入的氢元素在硅太阳能
太阳能电池中主要来自原子层沉积(ALD)、等离子体增强化学气相沉积(PECVD)或低压化学气相沉积(LPCVD)等镀膜技术在沉积薄膜的过程中引入的源气体,其不同的沉积参数会显著影响氢的浓度和扩散行为。研究
储能模块,双良集中式浸没液冷系统面向智算中心、电化学储能电站、压缩空气储能项目等应用场景,采用自然冷却和压缩制冷自主切换的模式,实现整体节能超50%,同时将温控精度控制在±0.2℃以下,使电芯温差小于
绿电制氢系统销售合同,此前也为阿曼联合太阳能项目、ACME集团阿曼绿氢绿氨项目等多个海外重量级项目供货,显示出市场对双良绿电制氢系统的高度认可。在绿电应用模块,双良持续推动技术创新与产品升级,电制冷
2025年6月11日,备受瞩目的SNEC第十八届(2025)国际太阳能光伏与智慧能源(上海)大会暨展览会,在中国国家会展中心(上海)拉开帷幕。阿特斯阳光电力集团携旗下新一代N型高效组件、储能系统以及
运营成本。在安全设计方面,SolBank 3.0
Plus进一步强化,采用航空级隔热材料以及升级版电气保护系统,进一步提升了该系列产品已经获得市场检验的高安全标准和良好安全记录。优化后的电池冷却
6月10日,随着"十四五"重点工程——哈密-重庆特高压直流工程正式投运,我国“疆电外送”的第三条特高压直流通道正式启动。这条“电力高速”,将新疆哈密优质的风能、太阳能、煤炭等资源转化成电能,只需7
领先水平。750千伏站用变压器是巴里坤换流站的“心脏电源”,承担着将高压电转换为低压电的关键任务,为站内控制室、冷却系统、照明设备等提供持续稳定的电力供应,确保换流站全天候安全运行。由特变电工提供的巴里
), Cong Chen(河工大陈聪), Meicheng Li(华北电力李美成), Jiangzhao
Chen(昆明理工陈江照) 研究内容多组分离子迁移是导致钙钛矿太阳能电池(PSCs)本征
上,持续 30 秒,随后在氮气手套箱中 70℃退火 1 分钟。接着,将 FAI:MACl(90:13
mg/ml)溶解于异丙醇(IPA)中,并以 1800 rpm 的转速旋涂到冷却后的 PbI
高性能钙钛矿太阳能电池需要协同钝化策略来解决电子传输层(ETL)/钙钛矿界面的缺陷,这些缺陷会影响效率和长期稳定性。鉴于此,浙江大学刘鹏&高翔院士&浙江工业大学潘军&西湖大学王睿于
Chloramine Hydrochloride Molecular
Bridges”通过氯胺盐酸盐分子桥实现钙钛矿太阳能电池的协同双界面工程的研究成果,本研究引入氯胺盐酸盐(CAH)——2-氯乙胺