四所高校合力:27.18%!认证效率26.79%!C8A修饰倒置钙钛矿太阳能电池!真空闪蒸法再创纪录!

来源:钙钛矿太阳能电池之基石搭建发布时间:2025-06-09 13:45:19

第一作者:Dongmei He, Danqing Ma, Jiajia Zhang, Yingying Yang, Jike Ding, Cong Liu

通讯作者: Tao Liu(广西刘焘), Cong Chen(河工大陈聪), Meicheng Li(华北电力李美成), Jiangzhao Chen(昆明理工陈江照)

  研究内容

多组分离子迁移是导致钙钛矿太阳能电池(PSCs)本征不稳定的核心因素。本研究创新性地提出基于主客体相互作用的杯芳烃超分子策略,通过同步抑制多种可移动化学组分的迁移,实现功能层的协同稳定化。引入4-叔丁基杯[8]芳烃(C8A)后,界面缺陷得到钝化,有效抑制了陷阱辅助的非辐射复合。

对于n-i-p常规结构器件,C8A还促进Spiro-OmetaD的空穴传输层p型掺杂,提升空穴提取与传输效率。基于两步法沉积工艺的C8A修饰常规器件实现了26.01%的功率转换效率(认证效率25.68%),创下TiO₂基平面结构PSCs的效率纪录。而经C8A钝化的p-i-n倒置结构器件更获得27.18%的冠军效率(认证26.79%),成为真空闪蒸法制备PSCs的最高效率。未封装的倒置器件在最大功率点连续运行1015小时后仍保持95%的初始效率。该工作为解决钙钛矿光伏及其他光电器件的本征稳定性问题提供了普适性方案。

杯芳烃与功能层相互作用的理论与实验研究。a) 4TBP、C4A、C6A和C8A与Li⁺的结合能对比。b) 4TBP、C4A、C6A和C8A与Ag的结合能对比。c) 4TBP、C4A、C6A和C8A与钙钛矿的结合能对比。d) 含/不含C8A的Li-TFSI溶液7Li核磁共振谱。e) 含/不含Li-TFSI的C8A溶液1H核磁共振谱。f,g) 含/不含C8A的Ag电极薄膜Ag 3d X射线光电子能谱。h) 基于C8A与多组分离子主客体相互作用的迁移抑制策略示意图。

多组分化学物种的同步固定化研究。a) 常规(n-i-p)结构器件在85°C、1太阳光强下老化10天后,未掺杂与C8A掺杂样品的飞行时间二次离子质谱(TOF-SIMS)深度分布对比。b) 倒置(p-i-n)结构器件在相同老化条件下,未修饰与C8A修饰样品的TOF-SIMS深度分布。c) 老化后未掺杂与C8A掺杂PSCs的截面扫描电镜(SEM)图像对比。d) 空穴传输层(HTLs)在老化前后的表面形貌SEM图像(左:未掺杂,右:C8A掺杂)。e) 老化HTLs的TOF-SIMS元素面分布图(上:未掺杂,下:C8A掺杂)。f,g) HTLs在40%-60%相对湿度、85°C环境下不同老化时间的开尔文探针力显微镜(KPFM)表征(f:未掺杂,g:C8A掺杂)。

C8A的多功能协同机制。a) 基于C8A主客体相互作用的分子胶囊策略固定多组分化合物的示意图。b) C8A原位钝化钙钛矿表面缺陷的作用机制示意图。c) C8A促进空穴传输层p型掺杂的加速机理图示。

光伏性能与长期稳定性研究。a) 基于Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06钙钛矿组分的阶梯法制备器件,未掺杂与C8A掺杂最优性能电池的J-V曲线对比。b) 两步法制备冠军器件的J-V曲线(左:未掺杂,右:C8A掺杂)。c) 本工作器件与已报道高效常规结构PSCs的认证效率对比。d) 倒置结构器件在C8A钝化前后的J-V特性变化。e) 基于ISOS-L-1I标准,未封装p-i-n器件在1太阳光强持续照射下最大功率点(MPP)的 operational稳定性(蓝线:未修饰,红线:C8A修饰)。f) 常规结构未封装器件在相同测试条件下的MPP operational稳定性对比。

器件制备

HTL 前驱体溶液的制备

HTL 前驱体溶液的制备方法如下:将 72.3 mg Spiro-OmetaD 溶解于 1 mL 氯苯中,加入 28.8 μL 三叔丁基吡啶(tBP)和 17.5 µL 双三氟甲烷磺酰亚胺锂 / 乙腈溶液(520 mg/mL),搅拌 30 分钟,使用前经 0.22 μm 聚四氟乙烯(PTFE)滤膜过滤。对于改性 HTL 前驱体溶液,在上述 HTL 前驱体溶液中加入不同浓度的 4TBP、C4A、C6A 和 C8A 掺杂剂,搅拌 60 分钟,使用前经 0.22 μm 聚四氟乙烯(PTFE)滤膜过滤。

基于一步法的正式器件制备

将刻蚀后的 ITO 玻璃依次在洗涤剂、去离子水和乙醇中超声清洗。ITO 衬底经紫外臭氧(UVO)处理 15 分钟。用去离子水将 SnO₂胶体溶液(15wt%)稀释至 3.75wt%。将 SnO₂胶体溶液以 3000 rpm 的转速旋涂在 ITO 衬底上,持续 30 秒。SnO₂薄膜在 150℃下退火 30 分钟,然后再次暴露于紫外臭氧中处理 15 分钟。对于 Rb₀.₀₂(FA₀.₉₅Cs₀.₀₅)₀.₉₈PbI₂.₉₁Br₀.₀₃Cl₀.₀₆三阳离子钙钛矿前驱体溶液,将 FAI(248.16 mg)、CsI(19.73 mg)、RbI(6.58 mg)、MACl(35.00 mg)、PbCl₂(12.74 mg)、PbI₂(682.73 mg)和 PbBr₂(8.53 mg)溶解于 DMSO:DMF(体积比 1:4)混合溶剂中,制备 1.55 M 钙钛矿前驱体溶液。所制备的钙钛矿前驱体溶液使用前经 0.22 µm 聚四氟乙烯(PTFE)滤膜过滤。随后,将钙钛矿前驱体溶液以 4000 rpm 的转速旋涂在 SnO₂薄膜上,持续 30 秒,在旋涂结束前 15 秒时向钙钛矿薄膜滴加 80 µL 氯苯(CB),之后在 130℃下热退火 30 分钟(空气手套箱相对湿度:10-20%)。接着,将 HTL 前驱体溶液以 4000 rpm 的转速旋涂在钙钛矿薄膜上,持续 30 秒,制备空穴传输层(HTL)。最后,使用荫罩(0.1 cm²)在 3×10⁻⁴ Pa 真空条件下,通过热蒸发在 HTL 表面沉积 80 nm 银或金对电极。需要注意的是,钙钛矿薄膜和空穴传输层均在相对湿度 10-20%、温度 20-25℃的干燥空气手套箱中制备。

基于两步法的正式器件制备

将 FTO 玻璃衬底分别在去离子水和乙醇中超声清洗 15 分钟。用高纯氮气流吹干衬底后,将 FTO 衬底经紫外臭氧处理 15 分钟以获得亲水表面。接下来,将清洗后的 FTO 垂直浸入 SnO₂或 GLDA-SnO₂化学浴沉积(CBD)溶液中,并在干燥箱中 90℃加热 4 小时。然后,将 SnO₂薄膜依次在去离子水和异丙醇中超声清洗 5 分钟,用气枪吹干,随后在 150℃下退火 1 小时。对于制备 GLDA-SnO₂/βA 衬底,将 50 µl βA 溶液滴在 GLDA-SnO₂表面,然后以 3000 rpm 的转速旋涂 30 秒。旋涂后,样品在 100℃下退火 10 分钟。钙钛矿薄膜通过两步沉积法制备:将含 3~5% 摩尔 RbCl 的 1.5 M PbI₂溶解于体积比为 9:1 的 DMF/DMSO 混合溶剂中,以 1500 rpm 的转速旋涂到 SnO₂衬底上,持续 30 秒,随后在氮气手套箱中 70℃退火 1 分钟。接着,将 FAI:MACl(90:13 mg/ml)溶解于异丙醇(IPA)中,并以 1800 rpm 的转速旋涂到冷却后的 PbI₂薄膜上,持续 30 秒。然后,在相对湿度约 40% 的环境空气中,将薄膜在 150℃下退火 15 分钟。随后,将 HTL 前驱体溶液以 4000 rpm 的转速旋涂在钙钛矿薄膜上,持续 30 秒,制备空穴传输层。最后,通过热蒸发在所得钙钛矿太阳能电池(PSCs)上沉积 100 nm 银电极。

倒置器件制备

首先,通过激光刻蚀技术对 ITO 衬底进行刻蚀。然后,将 ITO 衬底依次在洗涤剂溶液、去离子水和乙醇中超声清洗 15 分钟,随后烘干。衬底在旋涂 NiOx 纳米颗粒(30 mg NiOx 纳米颗粒分散于 1 ml 去离子水)前经紫外处理 15 分钟,并转移至氮气手套箱。将 Me-4PACz 溶液(0.5 mg/ml 溶解于 IPA,超声浴 10 分钟)涂覆在 ITO/NiOx 衬底上,然后在 150℃下退火 10 分钟。

将溶解于 1 ml DMF:DMSO(体积比 4:1)混合溶剂中的 1.6 M 钙钛矿(Cs₀.₀₅MA₀.₀₅FA₀.₉PbI₃)母液摇匀后,以 1000 rpm 旋涂 10 秒、5000 rpm 旋涂 30 秒的速度涂覆在 glass/ITO/NiOx/Me-4PACz 衬底上。湿钙钛矿薄膜立即暴露于 10 Pa 的低压下保持 30 秒,然后在空气中 100℃退火 15 分钟。

对于改性钙钛矿薄膜,将 C8A 溶解于 CB(1.5 mg/mL)中并旋涂在钙钛矿薄膜上。接下来,在 8×10⁻⁴ Pa 的高真空下热蒸发约 30 nm C60。然后,将 BCP 溶液(0.5 mg BCP 溶解于 1 ml IPA;经 0.22 μm PTFE 滤膜过滤)以 5000 rpm 的转速旋涂在 C60 层上,持续 30 秒。最后,在顶部热蒸发 80 nm 银电极。


索比光伏网 https://news.solarbe.com/202506/09/390099.html
责任编辑:wangqing01
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
合肥新站钙钛矿产业大会召开,全力打造“长三角钙钛矿光伏技术特色产业园”来源:钙钛矿工厂 发布时间:2025-12-29 09:47:39

12月26日下午,合肥新站高新区钙钛矿光伏产业创新发展会正式召开,高校专家、产业链企业金融机构、科创孵化平台代表齐聚新站共话钙钛矿光伏产业发展新机遇。

西交大梁超AM:29.14%! 全钙钛矿叠层电池! 四硫富瓦烯原位双界面调控实现高效Sn-Pb及全钙钛矿电池!来源:钙钛矿人 发布时间:2025-12-26 10:48:30

西安交通大学梁超等人提出一种原位双界面调控策略:在前驱体溶液中引入平面刚性电子给体四硫富瓦烯(TTF)。TTF与锡-铅钙钛矿前驱体组分间的电子给-受相互作用,辅以TTF原位自组装在钙钛矿体相及上下界面的双重富集,协同调控结晶动力学、均化Sn氧化态、促进载流子在体相与双界面处的抽取与输运,并稳固钙钛矿晶格。

中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

世界纪录!京东方钙钛矿小电池稳态27.37%!2.88㎡全面积效率20.11%!来源: 发布时间:2025-12-23 14:08:42

在钙钛矿光伏领域,京东方依托自身在玻璃基薄膜加工工艺及封装技术方面的独特优势,快速实现钙钛矿核心能力储备。经国际权威机构福建计量院认证,京东方小电池钙钛矿器件稳态效率最高达27.37%,刷新世界纪录;经TV南德权威认证,中试线2.88㎡刚性钙钛矿组件功率达579W,全面积效率20.11%,单结大面积器件效率行业第一;柔性效率也均创世界纪录,实验线柔性效率21.39%,中试线柔性效率16.6%,功率433w,是业内面积最大、功率最大的柔性组件。

579W !京东方2.88㎡钙钛矿刚性组件全面积TÜV南德认证效率达20.11%来源:钙钛矿工厂 发布时间:2025-12-23 10:12:23

12月22日,BOE(京东方)“焕新2026”年终媒体智享会收官站在武汉圆满落地。作为贯穿上海、成都、深圳三站后的压轴活动,本次会议以“焕新·向远而行”为核心主题,聚焦显示产业的可持续发展路径,全面展示BOE(京东方)在绿色技术、低碳运营与社会责任方面的丰硕实践成果,以及在钙钛矿光伏、智慧能源等领域的关键布局,为行业迈向可持续发展提供战略指引。

AFM:双重奏效!FAPbBr₃钙钛矿电池开路电压跃升至1.60V,光解水效率突破6.5%来源:知光谷 发布时间:2025-12-23 10:02:56

宽带隙甲脒铅溴钙钛矿太阳能电池在单结吸收体实现无辅助光驱动水分解方面具有潜力。FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。研究亮点:双重钝化协同增效:体相添加FASCN促进晶粒生长,表面处理PDAI钝化界面缺陷,显著抑制非辐射复合,开路电压提升至1.53V。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

溴功能化Bz-PhpPABrCz+Bz-PhpPACz二元混合SAM在纹理化钙钛矿/硅叠层太阳电池上实现31.4%效率来源:钙钛矿-晶硅叠层太阳电池TSCs 发布时间:2025-12-22 17:25:37

Huang等人关键发现:溴杂质意外提升性能意外发现:商用SAM材料4PADCB中意外含有溴代杂质,这些杂质反而提升了叠层电池性能。低滞后性:Mix和C-4PADCB电池滞后明显小于纯Bz-PhpPACz(图5B)。